These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 9149552)

  • 41. A 3-min all-out cycling test is sensitive to a change in critical power.
    Vanhatalo A; Doust JH; Burnley M
    Med Sci Sports Exerc; 2008 Sep; 40(9):1693-9. PubMed ID: 18685519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The power profile predicts road cycling MMP.
    Quod MJ; Martin DT; Martin JC; Laursen PB
    Int J Sports Med; 2010 Jun; 31(6):397-401. PubMed ID: 20301046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Seven intermittent exposures to altitude improves exercise performance at 4300 m.
    Beidleman BA; Muza SR; Fulco CS; Cymerman A; Sawka MN; Lewis SF; Skrinar GS
    Med Sci Sports Exerc; 2008 Jan; 40(1):141-8. PubMed ID: 18091011
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aerobic and anaerobic energy expenditure during exhaustive ramp exercise.
    Scott CB; Bogdanffy GM
    Int J Sports Med; 1998 May; 19(4):277-80. PubMed ID: 9657369
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Critical power: implications for determination of V˙O2max and exercise tolerance.
    Jones AM; Vanhatalo A; Burnley M; Morton RH; Poole DC
    Med Sci Sports Exerc; 2010 Oct; 42(10):1876-90. PubMed ID: 20195180
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plasma catecholamines, atrial natriuretic peptide and blood lactate responses during upright bicycle ergometry with incremental steps adapted to individual maximal work capacity.
    Osterode W; Böhm H; Osterode C
    Wien Klin Wochenschr; 1998 Mar; 110(6):220-4. PubMed ID: 9586147
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contributions of Lower-Body Strength Parameters to Critical Power and Anaerobic Work Capacity.
    Byrd MT; Wallace BJ; Clasey JL; Bergstrom HC
    J Strength Cond Res; 2021 Jan; 35(1):97-101. PubMed ID: 29489713
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ramp and constant power trials produce equivalent critical power estimates.
    Morton RH; Green S; Bishop D; Jenkins DG
    Med Sci Sports Exerc; 1997 Jun; 29(6):833-6. PubMed ID: 9219213
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alternative strategies for exercise critical power estimation in patients with COPD.
    Malaguti C; Nery LE; Dal Corso S; De Fuccio MB; Lerario MC; Cendon S; Neder JA
    Eur J Appl Physiol; 2006 Jan; 96(1):59-65. PubMed ID: 16249920
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Critical power test for ramp exercise.
    Morton RH
    Eur J Appl Physiol Occup Physiol; 1994; 69(5):435-8. PubMed ID: 7875141
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimation of the parameters of the relationship between power and time to exhaustion from a single ramp test.
    Pouilly JP; Chatagnon M; Thomas V; Busso T
    Can J Appl Physiol; 2005 Dec; 30(6):735-42. PubMed ID: 16485523
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The relationship between power output and endurance: a brief review.
    Morton RH; Hodgson DJ
    Eur J Appl Physiol Occup Physiol; 1996; 73(6):491-502. PubMed ID: 8817118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ramp-function work test suitable for automatic computation.
    Samuelsson PJ; Gill H; Lassvik C; Linnarsson D; Wigertz O
    Clin Physiol; 1986 Feb; 6(1):53-62. PubMed ID: 3943286
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Critical power test for ramp exercise.
    Vandewalle H
    Eur J Appl Physiol Occup Physiol; 1995; 71(2-3):285-6. PubMed ID: 7588703
    [No Abstract]   [Full Text] [Related]  

  • 55. [Study of ergometric exercise test adapted to actual working conditions found in a workshop].
    Tarrière C; Rebiffé R
    Ergonomics; 1969 Nov; 12(6):903-11. PubMed ID: 5378407
    [No Abstract]   [Full Text] [Related]  

  • 56. The critical power and related whole-body bioenergetic models.
    Morton RH
    Eur J Appl Physiol; 2006 Mar; 96(4):339-54. PubMed ID: 16284785
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The critical power model for intermittent exercise.
    Morton RH; Billat LV
    Eur J Appl Physiol; 2004 Mar; 91(2-3):303-7. PubMed ID: 14586587
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alternative forms of the critical power test for ramp exercise.
    Morton RH
    Ergonomics; 1997 May; 40(5):511-4. PubMed ID: 9149552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A 3-parameter critical power model.
    Morton RH
    Ergonomics; 1996 Apr; 39(4):611-9. PubMed ID: 8854981
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of pedal cadence on parameters of the hyperbolic power-time relationship.
    Hill DW; Smith JC; Leuschel JL; Chasteen SD; Miller SA
    Int J Sports Med; 1995 Feb; 16(2):82-7. PubMed ID: 7751081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.