These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 9150247)

  • 1. Influence of bile salts on molecular interactions between sphingomyelin and cholesterol: relevance to bile formation and stability.
    van Erpecum KJ; Carey MC
    Biochim Biophys Acta; 1997 Apr; 1345(3):269-82. PubMed ID: 9150247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo.
    Moschetta A; vanBerge-Henegouwen GP; Portincasa P; Renooij WL; Groen AK; van Erpecum KJ
    J Hepatol; 2001 Apr; 34(4):492-9. PubMed ID: 11394647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingomyelin exhibits greatly enhanced protection compared with egg yolk phosphatidylcholine against detergent bile salts.
    Moschetta A; vanBerge-Henegouwen GP; Portincasa P; Palasciano G; Groen AK; van Erpecum KJ
    J Lipid Res; 2000 Jun; 41(6):916-24. PubMed ID: 10828083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol crystallization in model biles: effects of bile salt and phospholipid species composition.
    Moschetta A; vanBerge-Henegouwen GP; Portincasa P; Palasciano G; van Erpecum KJ
    J Lipid Res; 2001 Aug; 42(8):1273-81. PubMed ID: 11483629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric distribution of phosphatidylcholine and sphingomyelin between micellar and vesicular phases. Potential implications for canalicular bile formation.
    Eckhardt ER; Moschetta A; Renooij W; Goerdayal SS; van Berge-Henegouwen GP; van Erpecum KJ
    J Lipid Res; 1999 Nov; 40(11):2022-33. PubMed ID: 10553006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different interactions of egg-yolk phosphatidylcholine and sphingomyelin with detergent bile salts.
    Nibbering CP; Frederik PM; van Berge-Henegouwen GP; van Veen HA; van Marle J; van Erpecum KJ
    Biochim Biophys Acta; 2002 Jul; 1583(2):213-20. PubMed ID: 12117565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions.
    Mazer NA; Carey MC
    Biochemistry; 1983 Jan; 22(2):426-42. PubMed ID: 6824637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of cholesterol in sphingomyelin- phosphatidylcholine vesicles has profound effects on detergent-induced phase transitions.
    Moschetta A; Frederik PM; Portincasa P; vanBerge-Henegouwen GP; van Erpecum KJ
    J Lipid Res; 2002 Jul; 43(7):1046-53. PubMed ID: 12091488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation and quantitation of cholesterol "carriers" in bile.
    Donovan JM; Carey MC
    Hepatology; 1990 Sep; 12(3 Pt 2):94S-104S; discussion 104S-105S. PubMed ID: 2210665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation.
    Cohen DE; Angelico M; Carey MC
    J Lipid Res; 1990 Jan; 31(1):55-70. PubMed ID: 2313205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of mixed micellar systems made by solubilizing phosphatidylcholine-cholesterol vesicles by bile salts.
    Lichtenberg D; Ragimova S; Bor A; Almog S; Vinkler C; Peled Y; Halpern Z
    Hepatology; 1990 Sep; 12(3 Pt 2):149S-153S; discussion 153S-154S. PubMed ID: 2210643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bile salt-membrane interactions and the physico-chemical mechanisms of bile salt toxicity.
    Heuman DM
    Ital J Gastroenterol; 1995 Sep; 27(7):372-5. PubMed ID: 8563009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile.
    Cohen DE; Thurston GM; Chamberlin RA; Benedek GB; Carey MC
    Biochemistry; 1998 Oct; 37(42):14798-814. PubMed ID: 9778354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems.
    Wang DQ; Carey MC
    J Lipid Res; 1996 Mar; 37(3):606-30. PubMed ID: 8728323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile.
    Donovan JM; Timofeyeva N; Carey MC
    J Lipid Res; 1991 Sep; 32(9):1501-12. PubMed ID: 1753218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evidence that phospholipid secretion into bile may be coordinated intracellularly by the combined actions of bile salts and the specific phosphatidylcholine transfer protein of liver.
    Cohen DE; Leonard MR; Carey MC
    Biochemistry; 1994 Aug; 33(33):9975-80. PubMed ID: 8061007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of bile salts with rat canalicular membrane vesicles: evidence for bile salt resistant microdomains.
    Guyot C; Stieger B
    J Hepatol; 2011 Dec; 55(6):1368-76. PubMed ID: 21703191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between organic anions, micelles and vesicles in model bile systems.
    Verkade HJ; de Bruijn MA; Brink MA; Talsma H; Vonk RJ; Kuipers F; Groen AK
    Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):917-23. PubMed ID: 9003381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of model bile using fluorescence energy transfer from dehydroergosterol to dansylated lecithin.
    Wrenn SP; Gudheti M; Veleva AN; Kaler EW; Lee SP
    J Lipid Res; 2001 Jun; 42(6):923-34. PubMed ID: 11369800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles.
    Luk AS; Kaler EW; Lee SP
    Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.