These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 9150442)

  • 1. The nature of renal cell injury.
    Edelstein CL; Ling H; Schrier RW
    Kidney Int; 1997 May; 51(5):1341-51. PubMed ID: 9150442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute renal failure: the glomerular and tubular connection.
    Bird JE; Blantz RC
    Pediatr Nephrol; 1987 Jul; 1(3):348-58. PubMed ID: 3153299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging therapies for acute renal failure.
    Edelstein CL; Ling H; Wangsiripaisan A; Schrier RW
    Am J Kidney Dis; 1997 Nov; 30(5 Suppl 4):S89-95. PubMed ID: 9372985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal tubular function in glycerol-induced acute renal failure.
    Westenfelder C; Arevalo GJ; Crawford PW; Zerwer P; Baranowski RL; Birch FM; Earnest WR; Hamburger RK; Coleman RD; Kurtzman NA
    Kidney Int; 1980 Oct; 18(4):432-44. PubMed ID: 6785513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-arginine reduces tubular cell injury in acute post-ischaemic renal failure.
    Jerkić M; Varagić J; Jovović D; Radujković-Kuburović G; Nastić-Mirić D; Adanja-Grujić G; Marković-Lipkovski J; Dimitrijević J; Miloradović Z; Vojvodić SB
    Nephrol Dial Transplant; 1999 Jun; 14(6):1398-407. PubMed ID: 10382999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the calcium-dependent enzymes nitric oxide synthase and calpain in hypoxia-induced proximal tubule injury.
    Edelstein CL; Yaqoob MM; Schrier RW
    Ren Fail; 1996 May; 18(3):501-11. PubMed ID: 8827996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-Arginine counteracts nitric oxide deficiency and improves the recovery phase of ischemic acute renal failure in rats.
    Schneider R; Raff U; Vornberger N; Schmidt M; Freund R; Reber M; Schramm L; Gambaryan S; Wanner C; Schmidt HH; Galle J
    Kidney Int; 2003 Jul; 64(1):216-25. PubMed ID: 12787412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathophysiology of ischaemic acute renal failure.
    Lameire NH; Vanholder R
    Best Pract Res Clin Anaesthesiol; 2004 Mar; 18(1):21-36. PubMed ID: 14760872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute renal failure in man: new aspects concerning pathogenesis. A morphometric study.
    Bohle A; Christensen J; Kokot F; Osswald H; Schubert B; Kendziorra H; Pressler H; Marcovic-Lipkovski J
    Am J Nephrol; 1990; 10(5):374-88. PubMed ID: 2080788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute-on-chronic renal failure in the rat: functional compensation and hypoxia tolerance.
    Goldfarb M; Rosenberger C; Abassi Z; Shina A; Zilbersat F; Eckardt KU; Rosen S; Heyman SN
    Am J Nephrol; 2006; 26(1):22-33. PubMed ID: 16508244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of reduced GFR in rabbits with ischemic acute renal failure.
    Kim SJ; Lim YT; Kim BS; Cho SI; Woo JS; Jung JS; Kim YK
    Ren Fail; 2000 Mar; 22(2):129-41. PubMed ID: 10803759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-binding proteins annexin A2 and S100A6 are sensors of tubular injury and recovery in acute renal failure.
    Cheng CW; Rifai A; Ka SM; Shui HA; Lin YF; Lee WH; Chen A
    Kidney Int; 2005 Dec; 68(6):2694-703. PubMed ID: 16316344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic anion infusions exacerbate experimental acute renal failure.
    Zager RA; Johannes GA; Sharma HM
    Am J Physiol; 1983 Jan; 244(1):F48-55. PubMed ID: 6217755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-Arginine transport is augmented through up-regulation of tubular CAT-2 mRNA in ischemic acute renal failure in rats.
    Schwartz IF; Schwartz D; Traskonov M; Chernichovsky T; Wollman Y; Gnessin E; Topilsky I; Levo Y; Iaina A
    Kidney Int; 2002 Nov; 62(5):1700-6. PubMed ID: 12371970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ischemic acute renal failure and antioxidant therapy in the rat. The relation between glomerular and tubular dysfunction.
    Bird JE; Milhoan K; Wilson CB; Young SG; Mundy CA; Parthasarathy S; Blantz RC
    J Clin Invest; 1988 May; 81(5):1630-8. PubMed ID: 2835399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue expression of tubular injury markers is associated with renal function decline in diabetic nephropathy.
    Hwang S; Park J; Kim J; Jang HR; Kwon GY; Huh W; Kim YG; Kim DJ; Oh HY; Lee JE
    J Diabetes Complications; 2017 Dec; 31(12):1704-1709. PubMed ID: 29037450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biology of ischemic and toxic renal tubular cell injury: role of nitric oxide and the inflammatory response.
    Lieberthal W
    Curr Opin Nephrol Hypertens; 1998 May; 7(3):289-95. PubMed ID: 9617560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tubular ultrastructure in acute renal failure in man: epithelial necrosis and regeneration.
    Olsen TS; Olsen HS; Hansen HE
    Virchows Arch A Pathol Anat Histopathol; 1985; 406(1):75-89. PubMed ID: 3922112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide supplementation in postischemic acute renal failure: normotension versus hypertension.
    Miloradović Z; Mihailović-Stanojević N; Milanović JG; Ivanov M; Jerkić M; Jovović D
    Curr Pharm Biotechnol; 2011 Sep; 12(9):1364-7. PubMed ID: 21554222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute renal failure.
    Bidani A; Churchill PC
    Dis Mon; 1989 Feb; 35(2):57-132. PubMed ID: 2647437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.