These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9150572)

  • 21. A mysterious dust clump in a disk around an evolved binary star system.
    Jura M; Turner J
    Nature; 1998 Sep; 395(6698):144-5. PubMed ID: 9744271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The building blocks of planets within the 'terrestrial' region of protoplanetary disks.
    van Boekel R; Min M; Leinert Ch; Waters LB; Richichi A; Chesneau O; Dominik C; Jaffe W; Dutrey A; Graser U; Henning T; de Jong J; Köhler R; de Koter A; Lopez B; Malbet F; Morel S; Paresce F; Perrin G; Preibisch T; Przygodda F; Schöller M; Wittkowski M
    Nature; 2004 Nov; 432(7016):479-82. PubMed ID: 15565147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Habitable zones around main sequence stars.
    Kasting JF; Whitmire DP; Reynolds RT
    Icarus; 1993 Jan; 101(1):108-28. PubMed ID: 11536936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemistry in low-mass protostellar and protoplanetary regions.
    van Dishoeck EF
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12249-56. PubMed ID: 16894165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical studies of the infrared emission from circumstellar dust shells: the infrared characteristics of circumstellar silicates and the mass-loss rate of oxygen-rich late-type giants.
    Schutte WA; Tielens AG
    Astrophys J; 1989 Aug; 343(1):369-92. PubMed ID: 11538346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A planetary system as the origin of structure in Fomalhaut's dust belt.
    Kalas P; Graham JR; Clampin M
    Nature; 2005 Jun; 435(7045):1067-70. PubMed ID: 15973402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phyllosilicate emission from protoplanetary disks: is the indirect detection of extrasolar water possible?
    Morris MA; Desch SJ
    Astrobiology; 2009 Dec; 9(10):965-78. PubMed ID: 20041749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of Solids in Planet Forming Disks: The Interplay of Experiments, Simulations, and Observations.
    Birnstiel T
    Proc Int Astron Union; 2019 Apr; 15(Suppl 350):200-204. PubMed ID: 33072169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disks around stars and the growth of planetary systems.
    Greaves JS
    Science; 2005 Jan; 307(5706):68-71. PubMed ID: 15637266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circumstellar chemistry from microwave and mm-wave spectroscopy.
    Bieging JH
    Adv Space Res; 1995 Mar; 15(3):3-14. PubMed ID: 11539242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The search for other planets: clues from the solar system.
    Owen T
    Astrophys Space Sci; 1994; 212():1-11. PubMed ID: 11539456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of sharp eccentric rings in debris disks with gas but without planets.
    Lyra W; Kuchner M
    Nature; 2013 Jul; 499(7457):184-7. PubMed ID: 23846656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery of water vapour around IRC+10216 as evidence for comets orbiting another star.
    Melnick GJ; Neufeld DA; Saavik Ford KE; Hollenbach DJ; Ashby ML
    Nature; 2001 Jul; 412(6843):160-3. PubMed ID: 11449266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoprocesses in protoplanetary disks.
    van Dishoeck EF; Jonkheid B; van Hemert MC
    Faraday Discuss; 2006; 133():231-43; discussion 347-74, 449-52. PubMed ID: 17191450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proximity of jupiter-like planets to low-mass stars.
    Boss AP
    Science; 1995 Jan; 267(5196):360-2. PubMed ID: 17837483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The origin of low mass stars.
    Wilking BA
    Orig Life Evol Biosph; 1997 Jun; 27(1-3):135-55. PubMed ID: 9150571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circumstellar disks of the most vigorously accreting young stars.
    Liu HB; Takami M; Kudo T; Hashimoto J; Dong R; Vorobyov EI; Pyo TS; Fukagawa M; Tamura M; Henning T; Dunham MM; Karr JL; Kusakabe N; Tsuribe T
    Sci Adv; 2016 Feb; 2(2):e1500875. PubMed ID: 26989772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid disappearance of a warm, dusty circumstellar disk.
    Melis C; Zuckerman B; Rhee JH; Song I; Murphy SJ; Bessell MS
    Nature; 2012 Jul; 487(7405):74-6. PubMed ID: 22763553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. (sub)Millimeter Emission Lines of Molecules in Born-again Stars
    Tafoya D; Toalá JA; Vlemmings WHT; Guerrero MA; De Beck E; González M; Kimeswenger S; Zijlstra AA; Sánchez-Monge Á; Treviño-Morales SP
    Astron Astrophys; 2017 Apr; 600():. PubMed ID: 31844330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Observations of chemical processing in the circumstellar environment.
    Mundy LG; McMullin JP; Blake GA
    Astrophys Space Sci; 1995; 224():81-4. PubMed ID: 11538417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.