These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 9150601)

  • 41. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS.
    Ito T; Wellmer F; Yu H; Das P; Ito N; Alves-Ferreira M; Riechmann JL; Meyerowitz EM
    Nature; 2004 Jul; 430(6997):356-60. PubMed ID: 15254538
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins.
    Fan HY; Hu Y; Tudor M; Ma H
    Plant J; 1997 Nov; 12(5):999-1010. PubMed ID: 9418042
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana.
    Takeda S; Matsumoto N; Okada K
    Development; 2004 Jan; 131(2):425-34. PubMed ID: 14681191
    [TBL] [Abstract][Full Text] [Related]  

  • 44. LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development.
    Conner J; Liu Z
    Proc Natl Acad Sci U S A; 2000 Nov; 97(23):12902-7. PubMed ID: 11058164
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis.
    Carles CC; Choffnes-Inada D; Reville K; Lertpiriyapong K; Fletcher JC
    Development; 2005 Mar; 132(5):897-911. PubMed ID: 15673576
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.
    Bemis SM; Lee JS; Shpak ED; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5323-33. PubMed ID: 24006425
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat and an acid phosphatase protein complex.
    Gamboa A; Paéz-Valencia J; Acevedo GF; Vázquez-Moreno L; Alvarez-Buylla RE
    Biochem Biophys Res Commun; 2001 Nov; 288(4):1018-26. PubMed ID: 11689012
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ectopic hypermethylation of flower-specific genes in Arabidopsis.
    Jacobsen SE; Sakai H; Finnegan EJ; Cao X; Meyerowitz EM
    Curr Biol; 2000 Feb; 10(4):179-86. PubMed ID: 10704409
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain.
    Hervé C; Dabos P; Galaud JP; Rougé P; Lescure B
    J Mol Biol; 1996 May; 258(5):778-88. PubMed ID: 8637009
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine and threonine.
    Hirayama T; Oka A
    Plant Mol Biol; 1992 Nov; 20(4):653-62. PubMed ID: 1450380
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Floral homeotic proteins modulate the genetic program for leaf development to suppress trichome formation in flowers.
    Ó'Maoiléidigh DS; Stewart D; Zheng B; Coupland G; Wellmer F
    Development; 2018 Feb; 145(3):. PubMed ID: 29361563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1.
    Kempin SA; Mandel MA; Yanofsky MF
    Plant Physiol; 1993 Dec; 103(4):1041-6. PubMed ID: 7507255
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular cloning, characterization and expression of WAG-2 alternative splicing transcripts in developing spikes of Aegilops tauschii.
    Wei S
    J Genet; 2016 Sep; 95(3):581-5. PubMed ID: 27659328
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Interaction between the PINOID/ABRUPTUS gene with the AGAMOUS gene: the negative regulator of stem cells in the meristem of Arabidopsis thaliana flower].
    Kavaĭ-ool UN; Karpenko OIu; Ezhova TA
    Ontogenez; 2011; 42(2):146-50. PubMed ID: 21542343
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium.
    Reiser L; Modrusan Z; Margossian L; Samach A; Ohad N; Haughn GW; Fischer RL
    Cell; 1995 Dec; 83(5):735-42. PubMed ID: 8521490
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cloning and characterization of a plant gene encoding a protein kinase.
    Hayashida N; Mizoguchi T; Shinozaki K
    Gene; 1993 Feb; 124(2):251-5. PubMed ID: 8444349
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis.
    Fan J; Li W; Dong X; Guo W; Shu H
    Sci China C Life Sci; 2007 Oct; 50(5):676-89. PubMed ID: 17879068
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis.
    Tzeng TY; Chen HY; Yang CH
    Plant Physiol; 2002 Dec; 130(4):1827-36. PubMed ID: 12481066
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2.
    Bomblies K; Dagenais N; Weigel D
    Dev Biol; 1999 Dec; 216(1):260-4. PubMed ID: 10588876
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG).
    Ray A; Robinson-Beers K; Ray S; Baker SC; Lang JD; Preuss D; Milligan SB; Gasser CS
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5761-5. PubMed ID: 7912435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.