BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 9150912)

  • 1. pH changes in Immobiline gels due to low-molecular mass ion adsorption and conditions for salt front formation during electrophoretic desorption.
    Stoyanov AV; Righetti PG
    Electrophoresis; 1997; 18(3-4):344-8. PubMed ID: 9150912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The adsorption of large proteins in electrofocusing on immobilized pH gradients: II. Dependence on the oligomeric state of Immobiline.
    Fawcett JS; Vicchio D; Chrambach A
    Electrophoresis; 1988 Sep; 9(9):469-74. PubMed ID: 3243244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state concentration distribution of ampholytes in isoelectric focusing in a linear immobilized pH gradient.
    Stoyanov AV; Righetti PG
    Electrophoresis; 1998 Jul; 19(10):1596-600. PubMed ID: 9719532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The adsorption of large proteins in electrofocusing on immobilized pH gradients: I. Protein specificity and dependence on Immobiline and carrier ampholyte concentrations.
    Fawcett JS; Chrambach A
    Electrophoresis; 1988 Sep; 9(9):463-9. PubMed ID: 3243243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of salt on the performance of immobilized pH gradient isoelectric focusing gels.
    Strahler JR; Hanash SM; Somerlot L; Bjellqvist B; Görg A
    Electrophoresis; 1988 Feb; 9(2):74-80. PubMed ID: 3234340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of protein isoelectric focusing in immobilized pH gradient gels.
    Stoyanov AV; Righetti PG
    Electrophoresis; 1996 Aug; 17(8):1313-8. PubMed ID: 8874056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isoelectric focusing in immobilized pH gradients: generation of extended pH intervals.
    Dossi G; Celentano F; Gianazza E; Righetti PG
    J Biochem Biophys Methods; 1983 Feb; 7(2):123-42. PubMed ID: 6833709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic contributions to the stability of halophilic proteins.
    Elcock AH; McCammon JA
    J Mol Biol; 1998 Jul; 280(4):731-48. PubMed ID: 9677300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins.
    Caetano M; Valderrama C; Farran A; Cortina JL
    J Colloid Interface Sci; 2009 Oct; 338(2):402-9. PubMed ID: 19679317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Isoelectric Focusing Using Mixed Synthetic-Carrier Ampholyte-Immobilized pH Gradient Gels.
    Dunn MJ; Patel K
    Methods Mol Biol; 1988; 3():187-201. PubMed ID: 21400164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein fractionation according to molecular size in constant pH media with immobilized charges in colinear porosity gradient.
    Stoyanov AV
    Anal Biochem; 2009 Mar; 386(1):116-8. PubMed ID: 19100708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of alkaline immobiline buffers for isoelectric focusing in immobilized pH gradients.
    Righetti PG; Chiari M; Casale E; Chiesa C
    Appl Theor Electrophor; 1989; 1(2):115-21. PubMed ID: 2488590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoelectric focusing in immobilized pH gradients: generation and optimization of wide pH intervals with two-chamber mixers.
    Gianazza E; Dossi G; Celentano F; Righetti PG
    J Biochem Biophys Methods; 1983 Sep; 8(2):109-33. PubMed ID: 6643919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of agarose IEF gels as the first dimension support for non-denaturing micro-2-DE in the separation of high-molecular-mass plasma proteins and protein complexes.
    Jin Y; Manabe T
    Electrophoresis; 2009 Mar; 30(6):939-48. PubMed ID: 19309012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pH and ionic strength on the steric mass-action model parameters around the isoelectric point of protein.
    Shi Q; Zhou Y; Sun Y
    Biotechnol Prog; 2005; 21(2):516-23. PubMed ID: 15801792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of monascus pigment derivatives on the electrophoretic mobility of bacteria, and the cell adsorption and antibacterial activities of pigments.
    Kim C; Jung H; Kim JH; Shin CS
    Colloids Surf B Biointerfaces; 2006 Feb; 47(2):153-9. PubMed ID: 16423514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH transitions in cation exchange chromatographic columns containing weak acid groups.
    Pabst TM; Carta G
    J Chromatogr A; 2007 Feb; 1142(1):19-31. PubMed ID: 16978635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionization and solubility of chitosan solutions related to thermosensitive chitosan/glycerol-phosphate systems.
    Filion D; Lavertu M; Buschmann MD
    Biomacromolecules; 2007 Oct; 8(10):3224-34. PubMed ID: 17850110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.