These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 9151192)

  • 1. Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular-structured drug carrier.
    Ooya T; Yui N
    J Biomater Sci Polym Ed; 1997; 8(6):437-55. PubMed ID: 9151192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of acetylation of biodegradable polyrotaxanes on its supramolecular dissociation via terminal ester hydrolysis.
    Watanabe J; Ooya T; Yui N
    J Biomater Sci Polym Ed; 1999; 10(12):1275-88. PubMed ID: 10673022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of theophylline-polyrotaxane conjugates and their drug release via supramolecular dissociation.
    Ooya T; Yui N
    J Control Release; 1999 Apr; 58(3):251-69. PubMed ID: 10099151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of polyrotaxanes as supramolecular conjugates for cells and tissues.
    Yui N; Ooya T
    J Artif Organs; 2004; 7(2):62-8. PubMed ID: 15309672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane.
    Watanabe J; Ooya T; Park KD; Kim YH; Yui N
    J Biomater Sci Polym Ed; 2000; 11(12):1333-45. PubMed ID: 11261875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular control of polyplex dissociation and cell transfection: efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes.
    Yamashita A; Kanda D; Katoono R; Yui N; Ooya T; Maruyama A; Akita H; Kogure K; Harashima H
    J Control Release; 2008 Oct; 131(2):137-44. PubMed ID: 18700157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of biodegradable polyrotaxanes on platelet activation.
    Yui N; Ooya T; Kumeno T
    Bioconjug Chem; 1998; 9(1):118-25. PubMed ID: 9460554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, characterization, and pH-triggered dethreading of alpha-cyclodextrin-poly(ethylene glycol) polyrotaxanes bearing cleavable endcaps.
    Loethen S; Ooya T; Choi HS; Yui N; Thompson DH
    Biomacromolecules; 2006 Sep; 7(9):2501-6. PubMed ID: 16961310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticoagulant activity of sulfonated polyrotaxanes as blood-compatible materials.
    Park HD; Lee WK; Ooya T; Park KD; Kim YH; Yui N
    J Biomed Mater Res; 2002 Apr; 60(1):186-90. PubMed ID: 11835174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol).
    Ooya T; Utsunomiya H; Eguchi M; Yui N
    Bioconjug Chem; 2005; 16(1):62-9. PubMed ID: 15656576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of intracellular metabolism by biodegradable polyrotaxanes.
    Ooya T; Kumeno T; Yui N
    J Biomater Sci Polym Ed; 1998; 9(4):313-26. PubMed ID: 9586781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring the supramolecular structure of aminated polyrotaxanes toward enhanced cellular internalization.
    Yokoyama N; Seo JH; Tamura A; Sasaki Y; Yui N
    Macromol Biosci; 2014 Mar; 14(3):359-68. PubMed ID: 24634263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of polyrotaxanes consisting of cationic alpha-cyclodextrins threaded on poly[(ethylene oxide)-ran-(propylene oxide)] as gene carriers.
    Yang C; Wang X; Li H; Goh SH; Li J
    Biomacromolecules; 2007 Nov; 8(11):3365-74. PubMed ID: 17929967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery.
    Li J; Loh XJ
    Adv Drug Deliv Rev; 2008 Jun; 60(9):1000-17. PubMed ID: 18413280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyrotaxane composed of poly-L-lactide and alpha-cyclodextrin exhibiting protease-triggered hydrolysis.
    Ohya Y; Takamido S; Nagahama K; Ouchi T; Katoono R; Yui N
    Biomacromolecules; 2009 Aug; 10(8):2261-7. PubMed ID: 19572640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyrotaxanes for applications in life science and biotechnology.
    Li JJ; Zhao F; Li J
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):427-43. PubMed ID: 21360153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A.
    Ooya T; Eguchi M; Yui N
    J Am Chem Soc; 2003 Oct; 125(43):13016-7. PubMed ID: 14570461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platelet responses to dynamic biomaterial surfaces with different poly(ethylene glycol) and polyrotaxane molecular architectures constructed on gold substrates.
    Kakinoki S; Yui N; Yamaoka T
    J Biomater Appl; 2013 Nov; 28(4):544-51. PubMed ID: 23048065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced accessibility of peptide substrate toward membrane-bound metalloexopeptidase by supramolecular structure of polyrotaxane.
    Ooya T; Eguchi M; Yui N
    Biomacromolecules; 2001; 2(1):200-3. PubMed ID: 11749173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suspending Polyrotaxane Dissociation via Photo-Reversible Capping of Terminals.
    Arisaka Y; Yui N
    Macromol Rapid Commun; 2019 Oct; 40(20):e1900323. PubMed ID: 31429992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.