BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9151427)

  • 1. Effects of haemoglobin O2 saturation on volume regulation in adrenergically stimulated red blood cells from the trout, Oncorhynchus mykiss.
    Nielsen OB
    J Comp Physiol B; 1997 Apr; 167(3):159-68. PubMed ID: 9151427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of the red blood cells from two high-energy-demand teleosts, yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis), to catecholamines.
    Lowe TE; Brill RW; Cousins KL
    J Comp Physiol B; 1998 Aug; 168(6):405-18. PubMed ID: 9747521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of hyperosmotic shrinkage and beta-adrenergic stimulation on red blood cell volume regulation and oxygen binding properties in rainbow trout and carp.
    Brauner CJ; Wang T; Jensen FB
    J Comp Physiol B; 2002 Apr; 172(3):251-62. PubMed ID: 11919706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of Coordinated and Adjustable Osmolytes Movements Following Hyposmotic Swelling in Rainbow Trout Red Blood Cells.
    Maxime V
    Cell Physiol Biochem; 2021 Oct; 55(S1):185-195. PubMed ID: 34694072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of cell volume and ion transport by beta-adrenergic catecholamines in erythrocytes of rainbow trout, Salmo gairdneri.
    Borgese F; Garcia-Romeu F; Motais R
    J Physiol; 1987 Jan; 382():123-44. PubMed ID: 3040965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. O(2)-dependent K(+) fluxes in trout red blood cells: the nature of O(2) sensing revealed by the O(2) affinity, cooperativity and pH dependence of transport.
    Berenbrink M; Völkel S; Heisler N; Nikinmaa M
    J Physiol; 2000 Jul; 526 Pt 1(Pt 1):69-80. PubMed ID: 10878100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catecholamine-induced changes in oxygen affinity of carp and trout blood.
    Holk K; Lykkeboe G
    Respir Physiol; 1995 Apr; 100(1):55-62. PubMed ID: 7604184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between beta-adrenoceptors and adrenergic responsiveness in trout (Oncorhynchus mykiss) and eel (Anguilla rostrata) erythrocytes.
    Perry SF; Reid SD
    J Exp Biol; 1992 Jun; 167():235-50. PubMed ID: 1321872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time course of red blood cell intracellular pH recovery following short-circuiting in relation to venous transit times in rainbow trout, Oncorhynchus mykiss.
    Harter TS; May AG; Federspiel WJ; Supuran CT; Brauner CJ
    Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R397-R407. PubMed ID: 29641235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium and potassium transport in trout (Salmo gairdneri) erythrocytes.
    Bourne PK; Cossins AR
    J Physiol; 1984 Feb; 347():361-75. PubMed ID: 6707960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell volume regulation during hyperosmotic shrinkage is mediated by Na+/K+-ATPase and Na+-K+-2Cl- cotransporter in Necturus gastrics surface epithelial cells.
    Nylander-Koski O; Mustonen H; Kiviluoto T; Kivilaakso E
    Dig Dis Sci; 2005 Nov; 50(11):2043-9. PubMed ID: 16240213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume-dependent potassium transport in camel red blood cells.
    Gharaibeh NS; Rawashdeh NM
    Membr Biochem; 1993; 10(2):99-106. PubMed ID: 8395642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of haemoglobin oxygenation on Bohr proton release and CO2 excretion in the rainbow trout.
    Brauner CJ; Gilmour KM; Perry SF
    Respir Physiol; 1996 Oct; 106(1):65-70. PubMed ID: 8946578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro effects of pH and hemoglobin-oxygen saturation on plasma and erythrocyte K+ levels in blood from trout.
    Nielsen OB; Lykkeboe G
    J Appl Physiol (1985); 1992 Apr; 72(4):1291-6. PubMed ID: 1592717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+/K+-ATPase inhibition during cardiac myocyte swelling: involvement of intracellular pH and Ca2+.
    Souza MM; Gross S; Boyle RT; Lieberman M
    Mol Cell Biochem; 2000 Jul; 210(1-2):173-83. PubMed ID: 10976771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two different oxygen sensors regulate oxygen-sensitive K+ transport in crucian carp red blood cells.
    Berenbrink M; Völkel S; Koldkjaer P; Heisler N; Nikinmaa M
    J Physiol; 2006 Aug; 575(Pt 1):37-48. PubMed ID: 16763000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen dependency of the adrenergic Na/H exchange in rainbow trout erythrocytes is diminished by a hydroxyl radical scavenger.
    Nikinmaa M; Bogdanova A; Lecklin T
    Acta Physiol Scand; 2003 Jun; 178(2):149-54. PubMed ID: 12780389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The control of Na+/H+ exchange by molecular oxygen in trout erythrocytes. A possible role of hemoglobin as a transducer.
    Motais R; Garcia-Romeu F; Borgese F
    J Gen Physiol; 1987 Aug; 90(2):197-207. PubMed ID: 3655716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the Na(+)-K+ pump in frog erythrocytes by catecholamines and phosphodiesterase blockers.
    Gusev GP; Agalakova NI; Lapin AV
    Biochem Pharmacol; 1996 Nov; 52(9):1347-53. PubMed ID: 8937444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and stoichiometry of the human red cell Na+/H+ exchanger.
    Semplicini A; Spalvins A; Canessa M
    J Membr Biol; 1989 Mar; 107(3):219-28. PubMed ID: 2541250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.