These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 9151476)

  • 1. A new method for myocardial activation imaging.
    Huiskamp G; Greensite F
    IEEE Trans Biomed Eng; 1997 Jun; 44(6):433-46. PubMed ID: 9151476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive myocardial activation time imaging: a novel inverse algorithm applied to clinical ECG mapping data.
    Modre R; Tilg B; Fischer G; Wach P
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1153-61. PubMed ID: 12374339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of noninvasive reconstruction of epicardial versus transmembrane potentials in consideration of the null space.
    Messnarz B; Seger M; Modre R; Fischer G; Hanser F; Tilg B
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1609-18. PubMed ID: 15376509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the inverse problem of electrocardiography using a Duncan and Horn formulation of the Kalman filter.
    Berrier KL; Sorensen DC; Khoury DS
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):507-15. PubMed ID: 15000381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of two methods for choosing the regularization parameter for the inverse problem of electrocardiography.
    Lowther DA; Throne RD; Olson LG; Windle JR
    Biomed Sci Instrum; 2002; 38():257-61. PubMed ID: 12085612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns.
    Messnarz B; Tilg B; Modre R; Fischer G; Hanser F
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):273-81. PubMed ID: 14765700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavefront-based models for inverse electrocardiography.
    Ghodrati A; Brooks DH; Tadmor G; MacLeod RS
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1821-31. PubMed ID: 16941838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method for incorporating weighted temporal and spatial smoothing in the inverse problem of electrocardiography.
    Throne RD; Olson LG; Windle JR
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1054-9. PubMed ID: 12214879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using inverse electrocardiography to image myocardial infarction--reflecting on the 2007 PhysioNet/Computers in Cardiology Challenge.
    Dawoud F; Wagner GS; Moody G; Horácek BM
    J Electrocardiol; 2008; 41(6):630-5. PubMed ID: 18954610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem.
    Jiang M; Xia L; Shou G; Tang M
    Phys Med Biol; 2007 Mar; 52(5):1277-94. PubMed ID: 17301454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity- and effort-gain analysis: multilead ECG electrode array selection for activation time imaging.
    Hintermüller C; Seger M; Pfeifer B; Fischer G; Modre R; Tilg B
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2055-66. PubMed ID: 17019870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial regularization of the electrocardiographic inverse problem and its application to endocardial mapping.
    Velipasaoglu EO; Sun H; Zhang F; Berrier KL; Khoury DS
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):327-37. PubMed ID: 10743774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two hybrid regularization frameworks for solving the electrocardiography inverse problem.
    Jiang M; Xia L; Shou G; Liu F; Crozier S
    Phys Med Biol; 2008 Sep; 53(18):5151-64. PubMed ID: 18723934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac anisotropy: is it negligible regarding noninvasive activation time imaging?
    Modre R; Seger M; Fischer G; Hintermüller C; Hayn D; Pfeifer B; Hanser F; Schreier G; Tilg B
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):569-80. PubMed ID: 16602563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional myocardial activation imaging in a rabbit model.
    Liu C; Zhang X; Liu Z; Pogwizd SM; He B
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1813-20. PubMed ID: 16941837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of "discontinuities" in the time derivatives of body surface potentials, and their prospective role in noninvasive imaging of the ventricular surface activation map.
    Greensite F
    IEEE Trans Biomed Eng; 1993 Dec; 40(12):1210-8. PubMed ID: 8125497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach.
    Li G; He B
    IEEE Trans Biomed Eng; 2001 Jun; 48(6):660-9. PubMed ID: 11396596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The maximum A posteriori approach to the inverse problem of electrocardiography.
    Bu G; Throne R; Olson L; Windle J
    Biomed Sci Instrum; 2003; 39():158-62. PubMed ID: 12724886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Truncated total least squares: a new regularization method for the solution of ECG inverse problems.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-beat noninvasive imaging of cardiac electrophysiology of ventricular pre-excitation.
    Berger T; Fischer G; Pfeifer B; Modre R; Hanser F; Trieb T; Roithinger FX; Stuehlinger M; Pachinger O; Tilg B; Hintringer F
    J Am Coll Cardiol; 2006 Nov; 48(10):2045-52. PubMed ID: 17112994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.