BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9151484)

  • 1. Design of a recognition system to predict movement during anesthesia.
    Sharma A; Roy RJ
    IEEE Trans Biomed Eng; 1997 Jun; 44(6):505-11. PubMed ID: 9151484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anesthesia control using midlatency auditory evoked potentials.
    Nayak A; Roy RJ
    IEEE Trans Biomed Eng; 1998 Apr; 45(4):409-21. PubMed ID: 9556958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing.
    Subasi A; Alkan A; Koklukaya E; Kiymik MK
    Neural Netw; 2005 Sep; 18(7):985-97. PubMed ID: 15921885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derived fuzzy knowledge model for estimating the depth of anesthesia.
    Zhang XS; Roy RJ
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):312-23. PubMed ID: 11327499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of fuzzy integrals and bispectral analysis of the electroencephalogram to predict movement under anesthesia.
    Muthuswamy J; Roy RJ
    IEEE Trans Biomed Eng; 1999 Mar; 46(3):291-9. PubMed ID: 10097464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of EEG signals using neural network and logistic regression.
    Subasi A; Erçelebi E
    Comput Methods Programs Biomed; 2005 May; 78(2):87-99. PubMed ID: 15848265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design.
    Huan NJ; Palaniappan R
    J Neural Eng; 2004 Sep; 1(3):142-50. PubMed ID: 15876633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Monitoring the depth of anesthesia using a fuzzy neural network based on EEG].
    Li M; Ye ZQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):253-5. PubMed ID: 17039930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Analysis and research of brain-computer interface experiments for imaging left-right hands movement].
    Wu Y; He Q; Huang H; Zhang L; Zhuo Y; Xie Q; Wu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):983-8. PubMed ID: 19024431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting movement-related EEG change by wavelet decomposition-based neural networks trained with single thumb movement.
    Chen CW; Lin CC; Ju MS
    Clin Neurophysiol; 2007 Apr; 118(4):802-14. PubMed ID: 17317306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic seizure detection in EEG using logistic regression and artificial neural network.
    Alkan A; Koklukaya E; Subasi A
    J Neurosci Methods; 2005 Oct; 148(2):167-76. PubMed ID: 16023730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An adaptive error modeling scheme for the lossless compression of EEG signals.
    Sriraam N; Eswaran C
    IEEE Trans Inf Technol Biomed; 2008 Sep; 12(5):587-94. PubMed ID: 18779073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facial nerve electromyographic monitoring to predict movement in patients titrated to a standard anesthetic depth.
    Jellish WS; Leonetti JP; Buoy CM; Sincacore JM; Sawicki KJ; Macken MP
    Anesth Analg; 2009 Aug; 109(2):551-8. PubMed ID: 19608831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of electroencephalographic descriptors and end-tidal concentration in estimating depth of anesthesia.
    Muthuswamy J; Sharma A
    J Clin Monit; 1996 Sep; 12(5):353-64. PubMed ID: 8934342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processed electroencephalogram in depth of anesthesia monitoring.
    Palanca BJ; Mashour GA; Avidan MS
    Curr Opin Anaesthesiol; 2009 Oct; 22(5):553-9. PubMed ID: 19652597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on EEG signals data compression and spikes recognition with wavelet neural network].
    Yu A; Zhang Y; Yu K
    Zhongguo Yi Liao Qi Xie Za Zhi; 1998 Sep; 22(5):249-53. PubMed ID: 12078160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification.
    Garrett D; Peterson DA; Anderson CW; Thaut MH
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):141-4. PubMed ID: 12899257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of neural network and linear predictors for near-lossless compression of EEG signals.
    Sriraam N; Eswaran C
    IEEE Trans Inf Technol Biomed; 2008 Jan; 12(1):87-93. PubMed ID: 18270040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital and sampled-data control of arterial blood pressure during halothane anesthesia.
    Fukui Y; Smith NT; Fleming RA
    Anesth Analg; 1982 Dec; 61(12):1010-5. PubMed ID: 7149294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients.
    Güler I; Ubeyli ED
    J Neurosci Methods; 2005 Oct; 148(2):113-21. PubMed ID: 16054702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.