These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9151661)

  • 1. Opening of cardiac sarcolemmal KATP channels by dinitrophenol separate from metabolic inhibition.
    Alekseev AE; Gomez LA; Aleksandrova LA; Brady PA; Terzic A
    J Membr Biol; 1997 May; 157(2):203-14. PubMed ID: 9151661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP consumption by uncoupled mitochondria activates sarcolemmal K(ATP) channels in cardiac myocytes.
    Sasaki N; Sato T; Marbán E; O'Rourke B
    Am J Physiol Heart Circ Physiol; 2001 Apr; 280(4):H1882-8. PubMed ID: 11247805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isoflurane decreases ATP sensitivity of guinea pig cardiac sarcolemmal KATP channel at reduced intracellular pH.
    Stadnicka A; Bosnjak ZJ
    Anesthesiology; 2003 Feb; 98(2):396-403. PubMed ID: 12552199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder.
    Bonev AD; Nelson MT
    Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glibenclamide opens ATP-sensitive potassium channels in Xenopus oocyte follicular cells during metabolic stress.
    Guillemare E; Lazdunski M; Honoré E
    Mol Pharmacol; 1995 Mar; 47(3):588-94. PubMed ID: 7700256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of ATP sensitive potassium channel of isolated guinea pig ventricular myocytes by sarcolemmal monocarboxylate transport.
    Coetzee WA
    Cardiovasc Res; 1992 Nov; 26(11):1077-86. PubMed ID: 1291085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of ATP-sensitive K+ channels in isolated rat hearts assessed by 87Rb NMR spectroscopy.
    Kupriyanov VV; Yushmanov E; Xiang B; Deslauriers R
    NMR Biomed; 1998 May; 11(3):131-40. PubMed ID: 9699496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A disrupter of actin microfilaments impairs sulfonylurea-inhibitory gating of cardiac KATP channels.
    Brady PA; Alekseev AE; Aleksandrova LA; Gomez LA; Terzic A
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2710-6. PubMed ID: 8997334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface charge and properties of cardiac ATP-sensitive K+ channels.
    Deutsch N; Matsuoka S; Weiss JN
    J Gen Physiol; 1994 Oct; 104(4):773-800. PubMed ID: 7836941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia-induced preconditioning in adult stimulated cardiomyocytes is mediated by the opening and trafficking of sarcolemmal KATP channels.
    Budas GR; Jovanovic S; Crawford RM; Jovanovic A
    FASEB J; 2004 Jun; 18(9):1046-8. PubMed ID: 15084521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blockade of adenosine triphosphate-sensitive potassium channels by thiamylal in rat ventricular myocytes.
    Tsutsumi Y; Oshita S; Kitahata H; Kuroda Y; Kawano T; Nakaya Y
    Anesthesiology; 2000 Apr; 92(4):1154-9. PubMed ID: 10754636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HOE-234, a second generation K+ channel opener, antagonizes the ATP-dependent gating of cardiac ATP-sensitive K+ channels.
    Terzic A; Jahangir A; Kurachi Y
    J Pharmacol Exp Ther; 1994 Feb; 268(2):818-25. PubMed ID: 8113994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of 2,4-dinitrophenol or low [ATP]i on cell excitability and action potential propagation in guinea pig ventricular myocytes.
    Morley GE; Anumonwo JM; Delmar M
    Circ Res; 1992 Oct; 71(4):821-30. PubMed ID: 1516157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and pharmacological characterization of sarcolemmal ATP-sensitive potassium channels in the murine atrial HL-1 cell line.
    Fox JE; Jones L; Light PE
    J Cardiovasc Pharmacol; 2005 Jan; 45(1):30-5. PubMed ID: 15613976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and properties of ATP-sensitive potassium channels in myocytes from rabbit Purkinje fibres.
    Light PE; Cordeiro JM; French RJ
    Cardiovasc Res; 1999 Nov; 44(2):356-69. PubMed ID: 10690312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardioselective sulfonylthiourea HMR 1098 blocks mitochondrial uncoupling induced by a KATP channel opener, P-1075, in beating rat hearts.
    Jilkina O; Kuzio B; Grover GJ; Kupriyanov VV
    Biochim Biophys Acta; 2003 Jul; 1638(2):121-8. PubMed ID: 12853117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstituted human cardiac KATP channels: functional identity with the native channels from the sarcolemma of human ventricular cells.
    Babenko AP; Gonzalez G; Aguilar-Bryan L; Bryan J
    Circ Res; 1998 Nov; 83(11):1132-43. PubMed ID: 9831708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathophysiological functions of ATP-sensitive K+ channels in myocardial ischemia.
    Hiraoka M
    Jpn Heart J; 1997 May; 38(3):297-315. PubMed ID: 9290566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversal of the ATP-liganded state of ATP-sensitive K+ channels by adenylate kinase activity.
    Elvir-Mairena JR; Jovanovic A; Gomez LA; Alekseev AE; Terzic A
    J Biol Chem; 1996 Dec; 271(50):31903-8. PubMed ID: 8943234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-insensitive state of cardiac ATP-sensitive K+ channels. Basis for channel opening.
    Alekseev AE; Brady PA; Terzic A
    J Gen Physiol; 1998 Feb; 111(2):381-94. PubMed ID: 9450949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.