BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 9151664)

  • 1. Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain.
    Wahlberg JM; Spiess M
    J Cell Biol; 1997 May; 137(3):555-62. PubMed ID: 9151664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The topogenic contribution of uncharged amino acids on signal sequence orientation in the endoplasmic reticulum.
    Rösch K; Naeher D; Laird V; Goder V; Spiess M
    J Biol Chem; 2000 May; 275(20):14916-22. PubMed ID: 10747915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the hydrophobic domain in orienting natural signal sequences within the ER membrane.
    Eusebio A; Friedberg T; Spiess M
    Exp Cell Res; 1998 May; 241(1):181-5. PubMed ID: 9633526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charged residues are major determinants of the transmembrane orientation of a signal-anchor sequence.
    Beltzer JP; Fiedler K; Fuhrer C; Geffen I; Handschin C; Wessels HP; Spiess M
    J Biol Chem; 1991 Jan; 266(2):973-8. PubMed ID: 1985975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An amphiphilic lipid-binding domain influences the topology of a signal-anchor sequence in the mitochondrial outer membrane.
    Steenaart NA; Silvius JR; Shore GC
    Biochemistry; 1996 Mar; 35(12):3764-71. PubMed ID: 8619997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The v-sis protein retains biological activity as a type II membrane protein when anchored by various signal-anchor domains, including the hydrophobic domain of the bovine papilloma virus E5 oncoprotein.
    Xu YF; Meyer AN; Webster MK; Lee BA; Donoghue DJ
    J Cell Biol; 1993 Nov; 123(3):549-60. PubMed ID: 8227125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal and membrane anchor functions overlap in the type II membrane protein I gamma CAT.
    Lipp J; Dobberstein B
    J Cell Biol; 1988 Jun; 106(6):1813-20. PubMed ID: 3290220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly.
    Lu Y; Xiong X; Helm A; Kimani K; Bragin A; Skach WR
    J Biol Chem; 1998 Jan; 273(1):568-76. PubMed ID: 9417117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functions of signal and signal-anchor sequences are determined by the balance between the hydrophobic segment and the N-terminal charge.
    Sakaguchi M; Tomiyoshi R; Kuroiwa T; Mihara K; Omura T
    Proc Natl Acad Sci U S A; 1992 Jan; 89(1):16-9. PubMed ID: 1729684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletions into an NH2-terminal hydrophobic domain result in secretion of rotavirus VP7, a resident endoplasmic reticulum membrane glycoprotein.
    Poruchynsky MS; Tyndall C; Both GW; Sato F; Bellamy AR; Atkinson PH
    J Cell Biol; 1985 Dec; 101(6):2199-209. PubMed ID: 2999159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation of internal signal-anchor sequences at the Sec61 translocon.
    Kocik L; Junne T; Spiess M
    J Mol Biol; 2012 Dec; 424(5):368-78. PubMed ID: 23084973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the environment of signal-anchor sequences during topogenesis in the endoplasmic reticulum.
    Higy M; Gander S; Spiess M
    Biochemistry; 2005 Feb; 44(6):2039-47. PubMed ID: 15697229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An internal signal sequence: the asialoglycoprotein receptor membrane anchor.
    Spiess M; Lodish HF
    Cell; 1986 Jan; 44(1):177-85. PubMed ID: 3753585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redundancy of signal and anchor functions in the NH2-terminal uncharged region of influenza virus neuraminidase, a class II membrane glycoprotein.
    Brown DJ; Hogue BG; Nayak DP
    J Virol; 1988 Oct; 62(10):3824-31. PubMed ID: 3418787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism of signal sequence orientation in the endoplasmic reticulum.
    Goder V; Spiess M
    EMBO J; 2003 Jul; 22(14):3645-53. PubMed ID: 12853479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane insertion scanning of the human ileal sodium/bile acid co-transporter.
    Hallén S; Brändén M; Dawson PA; Sachs G
    Biochemistry; 1999 Aug; 38(35):11379-88. PubMed ID: 10471288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmembrane orientation of signal-anchor proteins is affected by the folding state but not the size of the N-terminal domain.
    Denzer AJ; Nabholz CE; Spiess M
    EMBO J; 1995 Dec; 14(24):6311-7. PubMed ID: 8557050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of the signal peptide/membrane anchor domain of a type II transmembrane protein into a cleavable signal peptide.
    Roy P; Chatellard C; Lemay G; Crine P; Boileau G
    J Biol Chem; 1993 Feb; 268(4):2699-704. PubMed ID: 8428944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tripartite structure of the signals that determine protein insertion into the endoplasmic reticulum membrane.
    Haeuptle MT; Flint N; Gough NM; Dobberstein B
    J Cell Biol; 1989 Apr; 108(4):1227-36. PubMed ID: 2784443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A part of the transmembrane domain of pro-TNF can function as a cleavable signal sequence that generates a biologically active secretory form of TNF.
    Ishisaka R; Sato N; Tanaka K; Takeshige T; Iwata H; Klostergaard J; Utsumi T
    J Biochem; 1999 Aug; 126(2):413-20. PubMed ID: 10423538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.