These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9151759)

  • 1. Synaptic enhancement and enhanced excitability in presynaptic and postsynaptic neurons in the conditioned stimulus pathway of Hermissenda.
    Frysztak RJ; Crow T
    J Neurosci; 1997 Jun; 17(11):4426-33. PubMed ID: 9151759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of type B and A photoreceptor inhibitory synaptic connections in conditioned Hermissenda.
    Frysztak RJ; Crow T
    J Neurosci; 1994 Mar; 14(3 Pt 1):1245-50. PubMed ID: 8120622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of correlates of classical conditioning in identified medial and lateral type A photoreceptors of Hermissenda.
    Frysztak RJ; Crow T
    J Neurosci; 1993 Jul; 13(7):2889-97. PubMed ID: 8331378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitation of monosynaptic and complex PSPs in type I interneurons of conditioned Hermissenda.
    Crow T; Tian LM
    J Neurosci; 2002 Sep; 22(17):7818-24. PubMed ID: 12196605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of presynaptic action potential kinetics underlies synaptic facilitation of type B photoreceptors after associative conditioning in Hermissenda.
    Gandhi CC; Matzel LD
    J Neurosci; 2000 Mar; 20(5):2022-35. PubMed ID: 10684903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of Pavlovian conditioning in components of the neural network supporting ciliary locomotion in Hermissenda.
    Crow T; Tian LM
    Learn Mem; 2003; 10(3):209-16. PubMed ID: 12773585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monosynaptic connections between identified A and B photoreceptors and interneurons in Hermissenda: evidence for labeled-lines.
    Crow T; Tian LM
    J Neurophysiol; 2000 Jul; 84(1):367-75. PubMed ID: 10899211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic basis of learning-correlated excitability changes in Hermissenda type A photoreceptors.
    Farley J; Han Y
    J Neurophysiol; 1997 Apr; 77(4):1861-88. PubMed ID: 9114242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiation of phototactic suppression in Hermissenda by compound conditioning results in potentiated excitability changes in type B and A photoreceptors.
    Farley J; Jin I
    Behav Neurosci; 1997 Apr; 111(2):309-19. PubMed ID: 9106672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor-stimulated phospholipase A(2) liberates arachidonic acid and regulates neuronal excitability through protein kinase C.
    Muzzio IA; Gandhi CC; Manyam U; Pesnell A; Matzel LD
    J Neurophysiol; 2001 Apr; 85(4):1639-47. PubMed ID: 11287487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incremental redistribution of protein kinase C underlies the acquisition curve during in vitro associative conditioning in Hermissenda.
    Muzzio IA; Talk AC; Matzel LD
    Behav Neurosci; 1997 Aug; 111(4):739-53. PubMed ID: 9267651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic facilitation at connections of Hermissenda type B photoreceptors.
    Schuman EM; Clark GA
    J Neurosci; 1994 Mar; 14(3 Pt 2):1613-22. PubMed ID: 8126558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PP1 inhibitors depolarize Hermissenda photoreceptors and reduce K+ currents.
    Huang H; Farley J
    J Neurophysiol; 2001 Sep; 86(3):1297-311. PubMed ID: 11535678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent changes in excitability after one-trial conditioning of Hermissenda.
    Crow T; Siddiqi V
    J Neurophysiol; 1997 Dec; 78(6):3460-4. PubMed ID: 9405561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of conditioned stimulus pathway phosphoprotein 24 expression blocks the reduction in A-type transient K+ current produced by one-trial in vitro conditioning of Hermissenda.
    Yamoah EN; Levic S; Redell JB; Crow T
    J Neurosci; 2005 May; 25(19):4793-800. PubMed ID: 15888654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein tyrosine kinase involvement in learning-produced changes in Hermissenda type B photoreceptors.
    Jin I; Huang H; Smith B; Farley J
    J Neurophysiol; 2009 Dec; 102(6):3573-95. PubMed ID: 19812284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro conditioning induces morphological changes in Hermissenda type B photoreceptor.
    Kawai R; Horikoshi T; Yasuoka T; Sakakibara M
    Neurosci Res; 2002 Aug; 43(4):363-72. PubMed ID: 12135779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Down-regulation of protein kinase C and kinase inhibitors dissociate short- and long-term enhancement produced by one-trial conditioning of Hermissenda.
    Crow T; Forrester J
    J Neurophysiol; 1993 Feb; 69(2):636-41. PubMed ID: 8459291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Hermissenda type a and type B photoreceptors: response to light as a function of intensity and duration.
    Mo JL; Blackwell KT
    J Neurosci; 2003 Sep; 23(22):8020-8. PubMed ID: 12954863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurophysiological substrates of context conditioning in Hermissenda suggest a temporally invariant form of activity-dependent neuronal facilitation.
    Talk AC; Muzzio IA; Matzel LD
    Neurobiol Learn Mem; 1999 Sep; 72(2):95-117. PubMed ID: 10438650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.