These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 9152451)
21. Compression of rat spinal cord in vitro: effects of ethanol on recovery of axonal conduction. Ridella SA; Anderson TE Cent Nerv Syst Trauma; 1986; 3(3):195-205. PubMed ID: 3802222 [TBL] [Abstract][Full Text] [Related]
23. Discrepancy between decreases in the amplitude of compound muscle action potential and loss of motor function caused by ischemic and compressive insults to the spinal cord. Nakagawa Y; Tamaki T; Yamada H; Nishiura H J Orthop Sci; 2002; 7(1):102-10. PubMed ID: 11819141 [TBL] [Abstract][Full Text] [Related]
24. Magnetic motor evoked potential monitoring in the rat. Linden RD; Zhang YP; Burke DA; Hunt MA; Harpring JE; Shields CB J Neurosurg; 1999 Oct; 91(2 Suppl):205-10. PubMed ID: 10505506 [TBL] [Abstract][Full Text] [Related]
26. Validity of transcranial motor evoked potentials as early indicators of neural compromise in rat model of spinal cord compression. Morris SH; Howard JJ; Rasmusson DD; El-Hawary R Spine (Phila Pa 1976); 2015 Apr; 40(8):E492-7. PubMed ID: 25868103 [TBL] [Abstract][Full Text] [Related]
27. Sustained spinal cord compression: part II: effect of methylprednisolone on regional blood flow and recovery of somatosensory evoked potentials. Carlson GD; Gorden CD; Nakazawa S; Wada E; Smith JS; LaManna JC J Bone Joint Surg Am; 2003 Jan; 85(1):95-101. PubMed ID: 12533578 [TBL] [Abstract][Full Text] [Related]
28. [Efferent spinal evoked potentials by transcranial magnetic stimulation in dog]. Kajihara H Nihon Seikeigeka Gakkai Zasshi; 1995 Oct; 69(10):1050-63. PubMed ID: 8551090 [TBL] [Abstract][Full Text] [Related]
29. Experimental investigation on the spinal cord evoked injury potential. Schramm J; Krause R; Shigeno T; Brock M J Neurosurg; 1983 Sep; 59(3):485-92. PubMed ID: 6886762 [TBL] [Abstract][Full Text] [Related]
30. Use of sensory-evoked potentials recorded from the human occiput for intraoperative physiologic monitoring of the spinal cord. Hurlbert RJ; Fehlings MG; Moncada MS Spine (Phila Pa 1976); 1995 Nov; 20(21):2318-27. PubMed ID: 8553120 [TBL] [Abstract][Full Text] [Related]
31. Cortical activity after stimulation of the corticospinal tract in the spinal cord. Costa P; Deletis V Clin Neurophysiol; 2016 Feb; 127(2):1726-1733. PubMed ID: 26679418 [TBL] [Abstract][Full Text] [Related]
32. Effects of systemic or spinal cord cooling on conductive spinal evoked potentials. Kida Y; Takano H; Kitagawa H; Tsuji H Spine (Phila Pa 1976); 1994 Feb; 19(3):341-5. PubMed ID: 8171368 [TBL] [Abstract][Full Text] [Related]
34. Effects of core body temperature on changes in spinal somatosensory-evoked potential in acute spinal cord compression injury: an experimental study in the rat. Jou IM Spine (Phila Pa 1976); 2000 Aug; 25(15):1878-85. PubMed ID: 10908929 [TBL] [Abstract][Full Text] [Related]
35. "Threshold-level" multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. Calancie B; Harris W; Broton JG; Alexeeva N; Green BA J Neurosurg; 1998 Mar; 88(3):457-70. PubMed ID: 9488299 [TBL] [Abstract][Full Text] [Related]
36. Segmental recording of cortical motor evoked potentials from thoracic paravertebral myotomes in complete spinal cord injury. Cariga P; Catley M; Nowicky AV; Savic G; Ellaway PH; Davey NJ Spine (Phila Pa 1976); 2002 Jul; 27(13):1438-43. PubMed ID: 12131743 [TBL] [Abstract][Full Text] [Related]
37. A new criterion for the alarm point using a combination of waveform amplitude and onset latency in Br(E)-MsEP monitoring in spine surgery. Kobayashi K; Ando K; Shinjo R; Ito K; Tsushima M; Morozumi M; Tanaka S; Machino M; Ota K; Ishiguro N; Imagama S J Neurosurg Spine; 2018 Oct; 29(4):435-441. PubMed ID: 30052151 [TBL] [Abstract][Full Text] [Related]
38. Efficacy and limitations of intraoperative spinal cord monitoring using nasopharyngeal tube electrodes. Yamamoto N; Kobashi H; Shiba M; Itoh T J Neurosurg Spine; 2010 Aug; 13(2):200-10. PubMed ID: 20672955 [TBL] [Abstract][Full Text] [Related]
39. A new alarm point of transcranial electrical stimulation motor evoked potentials for intraoperative spinal cord monitoring: a prospective multicenter study from the Spinal Cord Monitoring Working Group of the Japanese Society for Spine Surgery and Related Research. Kobayashi S; Matsuyama Y; Shinomiya K; Kawabata S; Ando M; Kanchiku T; Saito T; Takahashi M; Ito Z; Muramoto A; Fujiwara Y; Kida K; Yamada K; Wada K; Yamamoto N; Satomi K; Tani T J Neurosurg Spine; 2014 Jan; 20(1):102-7. PubMed ID: 24236669 [TBL] [Abstract][Full Text] [Related]
40. Experimental acute dorsal compression of cat spinal cord: correlation of magnetic resonance signal intensity with spinal cord evoked potentials and morphology. Takahashi T; Suto Y; Kato S; Ohama E Spine (Phila Pa 1976); 1996 Jan; 21(2):166-73. PubMed ID: 8720399 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]