These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 9152576)
1. MR angiography of intracranial aneurysms: a comparison of 0.5 T and 1.5 T. Korogi Y; Takahashi M; Mabuchi N; Watabe T; Shiokawa Y; Shiga H; O'Uchi T; Nakagawa T; Miki H; Horikawa Y; Fujiwara S; Furuse M Comput Med Imaging Graph; 1997; 21(2):111-6. PubMed ID: 9152576 [TBL] [Abstract][Full Text] [Related]
2. Intracranial aneurysms: detection and characterization with MR angiography with use of an advanced postprocessing technique in a blinded-reader study. Atlas SW; Sheppard L; Goldberg HI; Hurst RW; Listerud J; Flamm E Radiology; 1997 Jun; 203(3):807-14. PubMed ID: 9169709 [TBL] [Abstract][Full Text] [Related]
3. Diagnosis of intracranial aneurysms: accuracy of MR angiography at 0.5 T. Grandin CB; Mathurin P; Duprez T; Stroobandt G; Hammer F; Goffette P; Cosnard G AJNR Am J Neuroradiol; 1998 Feb; 19(2):245-52. PubMed ID: 9504473 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience. Mönninghoff C; Maderwald S; Theysohn JM; Kraff O; Ladd SC; Ladd ME; Forsting M; Quick HH; Wanke I Rofo; 2009 Jan; 181(1):16-23. PubMed ID: 19115164 [TBL] [Abstract][Full Text] [Related]
5. Detection and characterization of intracranial aneurysms with MR angiography: comparison of volume-rendering and maximum-intensity-projection algorithms. Mallouhi A; Felber S; Chemelli A; Dessl A; Auer A; Schocke M; Jaschke WR; Waldenberger P AJR Am J Roentgenol; 2003 Jan; 180(1):55-64. PubMed ID: 12490476 [TBL] [Abstract][Full Text] [Related]
7. Spurious absence of signal on 3D time-of-flight MR angiograms on 1 and 3 tesla magnets in cerebral arteries associated with a giant ophthalmic segment aneurysm: the need for alternative techniques. Thomas B; Sunaert S; Thamburaj K; Wilms G JBR-BTR; 2005; 88(5):241-4. PubMed ID: 16302334 [TBL] [Abstract][Full Text] [Related]
8. Follow-up of intracranial aneurysms treated by flow diverter: comparison of three-dimensional time-of-flight MR angiography (3D-TOF-MRA) and contrast-enhanced MR angiography (CE-MRA) sequences with digital subtraction angiography as the gold standard. Attali J; Benaissa A; Soize S; Kadziolka K; Portefaix C; Pierot L J Neurointerv Surg; 2016 Jan; 8(1):81-6. PubMed ID: 25352582 [TBL] [Abstract][Full Text] [Related]
9. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms. Cirillo M; Scomazzoni F; Cirillo L; Cadioli M; Simionato F; Iadanza A; Kirchin M; Righi C; Anzalone N Eur J Radiol; 2013 Dec; 82(12):e853-9. PubMed ID: 24103356 [TBL] [Abstract][Full Text] [Related]
10. High resolution, magnetization transfer saturation, variable flip angle, time-of-flight MRA in the detection of intracranial vascular stenoses. Dagirmanjian A; Ross JS; Obuchowski N; Lewin JS; Tkach JA; Ruggieri PM; Masaryk TJ J Comput Assist Tomogr; 1995; 19(5):700-6. PubMed ID: 7560313 [TBL] [Abstract][Full Text] [Related]
12. Sensitivity encoding (SENSE) for high spatial resolution time-of-flight MR angiography of the intracranial arteries at 3.0 T. Willinek WA; Gieseke J; von Falkenhausen M; Born M; Hadizadeh D; Manka C; Textor HJ; Schild HH; Kuhl CK Rofo; 2004 Jan; 176(1):21-6. PubMed ID: 14712403 [TBL] [Abstract][Full Text] [Related]
13. Anatomic evaluation of the circle of Willis: MR angiography versus intraarterial digital subtraction angiography. Stock KW; Wetzel S; Kirsch E; Bongartz G; Steinbrich W; Radue EW AJNR Am J Neuroradiol; 1996 Sep; 17(8):1495-9. PubMed ID: 8883648 [TBL] [Abstract][Full Text] [Related]
14. The non-invasive detection of intracranial aneurysms: are neuroradiologists any better than other observers? White PM; Wardlaw JM; Lindsay KW; Sloss S; Patel DK; Teasdale EM Eur Radiol; 2003 Feb; 13(2):389-96. PubMed ID: 12599005 [TBL] [Abstract][Full Text] [Related]
15. Azygous anterior cerebral artery and associated aneurysms: detection and identification using 3-dimensional time-of-flight magnetic resonance angiography. Wan-Yin S; Ming-Hua L; Bin-Xian G; Yong-Dong L; Hua-Qiao T J Neuroimaging; 2014; 24(1):18-22. PubMed ID: 23163794 [TBL] [Abstract][Full Text] [Related]
16. Preliminary results on the management of unruptured intracranial aneurysms with magnetic resonance angiography and computed tomographic angiography. Harrison MJ; Johnson BA; Gardner GM; Welling BG Neurosurgery; 1997 May; 40(5):947-55; discussion 955-7. PubMed ID: 9149253 [TBL] [Abstract][Full Text] [Related]
18. Detection of unruptured cerebral artery aneurysms by MRA at 3.0 tesla: comparison with multislice helical computed tomographic angiography. Numminen J; Tarkiainen A; Niemelä M; Porras M; Hernesniemi J; Kangasniemi M Acta Radiol; 2011 Jul; 52(6):670-4. PubMed ID: 21525105 [TBL] [Abstract][Full Text] [Related]
19. Follow up of coiled intracranial aneurysms with standard resolution and higher resolution magnetic resonance angiography. Dupre S; Coulthard A J Med Imaging Radiat Oncol; 2008 Feb; 52(1):57-63. PubMed ID: 18373828 [TBL] [Abstract][Full Text] [Related]
20. Contrast-free MRA at 3.0 T for the detection of intracranial aneurysms. Li MH; Li YD; Tan HQ; Gu BX; Chen YC; Wang W; Chen SW; Hu DJ Neurology; 2011 Aug; 77(7):667-76. PubMed ID: 21775735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]