BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9153087)

  • 1. Model building of a thermolysin-like protease by mutagenesis.
    Frigerio F; Margarit I; Nogarotto R; Grandi G; Vriend G; Hardy F; Veltman OR; Venema G; Eijsink VG
    Protein Eng; 1997 Mar; 10(3):223-30. PubMed ID: 9153087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of engineering surface loops on the thermal stability of Bacillus subtilis neutral protease.
    Hardy F; Vriend G; van der Vinne B; Frigerio F; Grandi G; Venema G; Eijsink VG
    Protein Eng; 1994 Mar; 7(3):425-30. PubMed ID: 8177891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases.
    Vriend G; Eijsink V
    J Comput Aided Mol Des; 1993 Aug; 7(4):367-96. PubMed ID: 8229092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease.
    Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A
    Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of cavity-filling mutations on the thermostability of Bacillus stearothermophilus neutral protease.
    Eijsink VG; Dijkstra BW; Vriend G; van der Zee JR; Veltman OR; van der Vinne B; van den Burg B; Kempe S; Venema G
    Protein Eng; 1992 Jul; 5(5):421-6. PubMed ID: 1518790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc protease of Bacillus subtilis var. amylosacchariticus: construction of a three-dimensional model and comparison with thermolysin.
    Tsuru D; Imajo S; Morikawa S; Yoshimoto T; Ishiguro M
    J Biochem; 1993 Jan; 113(1):101-5. PubMed ID: 8454566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the C-terminal amino acid to the stability of Bacillus subtilis neutral protease.
    Eijsink VG; Vriend G; Van Den Burg B; Venema G; Stulp BK
    Protein Eng; 1990 Oct; 4(1):99-104. PubMed ID: 2127107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal stability of homologous neutral metalloendopeptidases in thermophilic and mesophilic bacteria: structural considerations.
    Pangburn MK; Levy PL; Walsh KA; Neurath H
    Experientia Suppl; 1976; 26():19-30. PubMed ID: 820564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 A resolution.
    Banbula A; Potempa J; Travis J; Fernandez-Catalán C; Mann K; Huber R; Bode W; Medrano F
    Structure; 1998 Sep; 6(9):1185-93. PubMed ID: 9753696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction of a stabilizing 10 residue beta-hairpin in Bacillus subtilis neutral protease.
    Eijsink VG; Vriend G; van den Burg B; van der Zee JR; Veltman OR; Stulp BK; Venema G
    Protein Eng; 1992 Mar; 5(2):157-63. PubMed ID: 1594570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermolysin and Bacillus subtilis neutral protease. Conformation and stability of two homologous neutral metalloendopeptidases.
    Grandi C; Vita C; Dalzoppo D; Fontana A
    Int J Pept Protein Res; 1980 Oct; 16(4):327-38. PubMed ID: 6780484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of a surface area that is critical for the thermal stability of thermolysin-like proteases.
    Veltman OR; Vriend G; Hardy F; Mansfeld J; van den Burg B; Venema G; Eijsink VG
    Eur J Biochem; 1997 Sep; 248(2):433-40. PubMed ID: 9346299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early steps in the unfolding of thermolysin-like proteases.
    Vriend G; Berendsen HJ; van den Burg B; Venema G; Eijsink VG
    J Biol Chem; 1998 Dec; 273(52):35074-7. PubMed ID: 9857041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning, sequencing and expression of the gene encoding the extracellular neutral protease, vibriolysin, of Vibrio proteolyticus.
    David VA; Deutch AH; Sloma A; Pawlyk D; Ally A; Durham DR
    Gene; 1992 Mar; 112(1):107-12. PubMed ID: 1551587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural features of neutral protease from Bacillus subtilis deduced from model-building and limited proteolysis experiments.
    Signor G; Vita C; Fontana A; Frigerio F; Bolognesi M; Toma S; Gianna R; De Gregoriis E; Grandi G
    Eur J Biochem; 1990 Apr; 189(2):221-7. PubMed ID: 2110895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cumulative stabilizing effects of hydrophobic interactions on the surface of the neutral protease from Bacillus subtilis.
    Frigerio F; Margarit I; Nogarotto R; de Filippis V; Grandi G
    Protein Eng; 1996 May; 9(5):439-45. PubMed ID: 8795044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of changing the interaction between subdomains on the thermostability of Bacillus neutral proteases.
    Eijsink VG; Vriend G; van der Vinne B; Hazes B; van den Burg B; Venema G
    Proteins; 1992 Oct; 14(2):224-36. PubMed ID: 1409570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of neutral protease from Bacillus cereus at 0.2-nm resolution.
    Stark W; Pauptit RA; Wilson KS; Jansonius JN
    Eur J Biochem; 1992 Jul; 207(2):781-91. PubMed ID: 1633827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus.
    Wetmore DR; Wong SL; Roche RS
    Mol Microbiol; 1992 Jun; 6(12):1593-604. PubMed ID: 1495388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence regions of Bacilli metalloproteinases that can affect enzyme thermostability.
    Strongin A; Kostrov S; Kaydalova N
    Protein Seq Data Anal; 1991 Dec; 4(6):355-61. PubMed ID: 1812491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.