These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 9153087)
1. Model building of a thermolysin-like protease by mutagenesis. Frigerio F; Margarit I; Nogarotto R; Grandi G; Vriend G; Hardy F; Veltman OR; Venema G; Eijsink VG Protein Eng; 1997 Mar; 10(3):223-30. PubMed ID: 9153087 [TBL] [Abstract][Full Text] [Related]
2. The effect of engineering surface loops on the thermal stability of Bacillus subtilis neutral protease. Hardy F; Vriend G; van der Vinne B; Frigerio F; Grandi G; Venema G; Eijsink VG Protein Eng; 1994 Mar; 7(3):425-30. PubMed ID: 8177891 [TBL] [Abstract][Full Text] [Related]
3. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases. Vriend G; Eijsink V J Comput Aided Mol Des; 1993 Aug; 7(4):367-96. PubMed ID: 8229092 [TBL] [Abstract][Full Text] [Related]
4. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease. Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021 [TBL] [Abstract][Full Text] [Related]
5. The effect of cavity-filling mutations on the thermostability of Bacillus stearothermophilus neutral protease. Eijsink VG; Dijkstra BW; Vriend G; van der Zee JR; Veltman OR; van der Vinne B; van den Burg B; Kempe S; Venema G Protein Eng; 1992 Jul; 5(5):421-6. PubMed ID: 1518790 [TBL] [Abstract][Full Text] [Related]
6. Zinc protease of Bacillus subtilis var. amylosacchariticus: construction of a three-dimensional model and comparison with thermolysin. Tsuru D; Imajo S; Morikawa S; Yoshimoto T; Ishiguro M J Biochem; 1993 Jan; 113(1):101-5. PubMed ID: 8454566 [TBL] [Abstract][Full Text] [Related]
7. Contribution of the C-terminal amino acid to the stability of Bacillus subtilis neutral protease. Eijsink VG; Vriend G; Van Den Burg B; Venema G; Stulp BK Protein Eng; 1990 Oct; 4(1):99-104. PubMed ID: 2127107 [TBL] [Abstract][Full Text] [Related]
8. Thermal stability of homologous neutral metalloendopeptidases in thermophilic and mesophilic bacteria: structural considerations. Pangburn MK; Levy PL; Walsh KA; Neurath H Experientia Suppl; 1976; 26():19-30. PubMed ID: 820564 [TBL] [Abstract][Full Text] [Related]
9. Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 A resolution. Banbula A; Potempa J; Travis J; Fernandez-Catalán C; Mann K; Huber R; Bode W; Medrano F Structure; 1998 Sep; 6(9):1185-93. PubMed ID: 9753696 [TBL] [Abstract][Full Text] [Related]
10. Introduction of a stabilizing 10 residue beta-hairpin in Bacillus subtilis neutral protease. Eijsink VG; Vriend G; van den Burg B; van der Zee JR; Veltman OR; Stulp BK; Venema G Protein Eng; 1992 Mar; 5(2):157-63. PubMed ID: 1594570 [TBL] [Abstract][Full Text] [Related]
11. Thermolysin and Bacillus subtilis neutral protease. Conformation and stability of two homologous neutral metalloendopeptidases. Grandi C; Vita C; Dalzoppo D; Fontana A Int J Pept Protein Res; 1980 Oct; 16(4):327-38. PubMed ID: 6780484 [TBL] [Abstract][Full Text] [Related]
12. Mutational analysis of a surface area that is critical for the thermal stability of thermolysin-like proteases. Veltman OR; Vriend G; Hardy F; Mansfeld J; van den Burg B; Venema G; Eijsink VG Eur J Biochem; 1997 Sep; 248(2):433-40. PubMed ID: 9346299 [TBL] [Abstract][Full Text] [Related]
13. Early steps in the unfolding of thermolysin-like proteases. Vriend G; Berendsen HJ; van den Burg B; Venema G; Eijsink VG J Biol Chem; 1998 Dec; 273(52):35074-7. PubMed ID: 9857041 [TBL] [Abstract][Full Text] [Related]
14. Cloning, sequencing and expression of the gene encoding the extracellular neutral protease, vibriolysin, of Vibrio proteolyticus. David VA; Deutch AH; Sloma A; Pawlyk D; Ally A; Durham DR Gene; 1992 Mar; 112(1):107-12. PubMed ID: 1551587 [TBL] [Abstract][Full Text] [Related]
15. Structural features of neutral protease from Bacillus subtilis deduced from model-building and limited proteolysis experiments. Signor G; Vita C; Fontana A; Frigerio F; Bolognesi M; Toma S; Gianna R; De Gregoriis E; Grandi G Eur J Biochem; 1990 Apr; 189(2):221-7. PubMed ID: 2110895 [TBL] [Abstract][Full Text] [Related]
16. Cumulative stabilizing effects of hydrophobic interactions on the surface of the neutral protease from Bacillus subtilis. Frigerio F; Margarit I; Nogarotto R; de Filippis V; Grandi G Protein Eng; 1996 May; 9(5):439-45. PubMed ID: 8795044 [TBL] [Abstract][Full Text] [Related]
17. Effects of changing the interaction between subdomains on the thermostability of Bacillus neutral proteases. Eijsink VG; Vriend G; van der Vinne B; Hazes B; van den Burg B; Venema G Proteins; 1992 Oct; 14(2):224-36. PubMed ID: 1409570 [TBL] [Abstract][Full Text] [Related]
18. The structure of neutral protease from Bacillus cereus at 0.2-nm resolution. Stark W; Pauptit RA; Wilson KS; Jansonius JN Eur J Biochem; 1992 Jul; 207(2):781-91. PubMed ID: 1633827 [TBL] [Abstract][Full Text] [Related]
19. The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus. Wetmore DR; Wong SL; Roche RS Mol Microbiol; 1992 Jun; 6(12):1593-604. PubMed ID: 1495388 [TBL] [Abstract][Full Text] [Related]
20. Sequence regions of Bacilli metalloproteinases that can affect enzyme thermostability. Strongin A; Kostrov S; Kaydalova N Protein Seq Data Anal; 1991 Dec; 4(6):355-61. PubMed ID: 1812491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]