These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 9153188)
1. Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. Strack S; Choi S; Lovinger DM; Colbran RJ J Biol Chem; 1997 May; 272(21):13467-70. PubMed ID: 9153188 [TBL] [Abstract][Full Text] [Related]
2. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Lisman JE; Zhabotinsky AM Neuron; 2001 Aug; 31(2):191-201. PubMed ID: 11502252 [TBL] [Abstract][Full Text] [Related]
3. CaMKII-dependent phosphorylation of NR2A and NR2B is decreased in animals characterized by hippocampal damage and impaired LTP. Caputi A; Gardoni F; Cimino M; Pastorino L; Cattabeni F; Di Luca M Eur J Neurosci; 1999 Jan; 11(1):141-8. PubMed ID: 9987018 [TBL] [Abstract][Full Text] [Related]
4. Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. Strack S; Barban MA; Wadzinski BE; Colbran RJ J Neurochem; 1997 May; 68(5):2119-28. PubMed ID: 9109540 [TBL] [Abstract][Full Text] [Related]
5. Bidirectional regulation of cytoplasmic polyadenylation element-binding protein phosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein phosphatase 1 during hippocampal long-term potentiation. Atkins CM; Davare MA; Oh MC; Derkach V; Soderling TR J Neurosci; 2005 Jun; 25(23):5604-10. PubMed ID: 15944388 [TBL] [Abstract][Full Text] [Related]
6. Activation of dopamine D4 receptors induces synaptic translocation of Ca2+/calmodulin-dependent protein kinase II in cultured prefrontal cortical neurons. Gu Z; Jiang Q; Yuen EY; Yan Z Mol Pharmacol; 2006 Mar; 69(3):813-22. PubMed ID: 16365279 [TBL] [Abstract][Full Text] [Related]
7. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449 [TBL] [Abstract][Full Text] [Related]
8. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. Zhao D; Watson JB; Xie CW J Neurophysiol; 2004 Nov; 92(5):2853-8. PubMed ID: 15212428 [TBL] [Abstract][Full Text] [Related]
9. Interaction with the NMDA receptor locks CaMKII in an active conformation. Bayer KU; De Koninck P; Leonard AS; Hell JW; Schulman H Nature; 2001 Jun; 411(6839):801-5. PubMed ID: 11459059 [TBL] [Abstract][Full Text] [Related]
10. Protein phosphatase 1 is involved in the dissociation of Ca2+/calmodulin-dependent protein kinase II from postsynaptic densities. Yoshimura Y; Sogawa Y; Yamauchi T FEBS Lett; 1999 Mar; 446(2-3):239-42. PubMed ID: 10100849 [TBL] [Abstract][Full Text] [Related]
11. Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system. Zhabotinsky AM Biophys J; 2000 Nov; 79(5):2211-21. PubMed ID: 11053103 [TBL] [Abstract][Full Text] [Related]
12. Domoic acid induces a long-lasting enhancement of CA1 field responses and impairs tetanus-induced long-term potentiation in rat hippocampal slices. Qiu S; Jebelli AK; Ashe JH; CurrĂ¡s-Collazo MC Toxicol Sci; 2009 Sep; 111(1):140-50. PubMed ID: 19564213 [TBL] [Abstract][Full Text] [Related]
13. Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. Makhinson M; Chotiner JK; Watson JB; O'Dell TJ J Neurosci; 1999 Apr; 19(7):2500-10. PubMed ID: 10087064 [TBL] [Abstract][Full Text] [Related]
14. CaM kinase II in long-term potentiation. Fukunaga K; Muller D; Miyamoto E Neurochem Int; 1996 Apr; 28(4):343-58. PubMed ID: 8740440 [TBL] [Abstract][Full Text] [Related]
15. A mechanism for Ca2+/calmodulin-dependent protein kinase II clustering at synaptic and nonsynaptic sites based on self-association. Hudmon A; Lebel E; Roy H; Sik A; Schulman H; Waxham MN; De Koninck P J Neurosci; 2005 Jul; 25(30):6971-83. PubMed ID: 16049173 [TBL] [Abstract][Full Text] [Related]
16. An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Bradshaw JM; Kubota Y; Meyer T; Schulman H Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10512-7. PubMed ID: 12928489 [TBL] [Abstract][Full Text] [Related]
17. Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate. Brown GP; Blitzer RD; Connor JH; Wong T; Shenolikar S; Iyengar R; Landau EM J Neurosci; 2000 Nov; 20(21):7880-7. PubMed ID: 11050107 [TBL] [Abstract][Full Text] [Related]
18. Phosphorylation-dependent reversible translocation of Ca2+/calmodulin-dependent protein kinase II to the postsynaptic densities. Yamauchi T; Yoshimura Y Life Sci; 1998; 62(17-18):1617-21. PubMed ID: 9585146 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylation-dependent reversible association of Ca2+/calmodulin-dependent protein kinase II with the postsynaptic densities. Yoshimura Y; Yamauchi T J Biol Chem; 1997 Oct; 272(42):26354-9. PubMed ID: 9334208 [TBL] [Abstract][Full Text] [Related]
20. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Shen K; Meyer T Science; 1999 Apr; 284(5411):162-6. PubMed ID: 10102820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]