These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 9153391)

  • 41. How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model.
    Saudargiene A; Porr B; Wörgötter F
    Neural Comput; 2004 Mar; 16(3):595-625. PubMed ID: 15006093
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spike-timing-dependent Hebbian plasticity as temporal difference learning.
    Rao RP; Sejnowski TJ
    Neural Comput; 2001 Oct; 13(10):2221-37. PubMed ID: 11570997
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The generation and subtraction of sensory expectations within cerebellum-like structures.
    Bell C; Bodznick D; Montgomery J; Bastian J
    Brain Behav Evol; 1997; 50 Suppl 1():17-31. PubMed ID: 9217991
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synaptic modifications depend on synapse location and activity: a biophysical model of STDP.
    Saudargiene A; Porr B; Wörgötter F
    Biosystems; 2005; 79(1-3):3-10. PubMed ID: 15649584
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Burst-induced anti-Hebbian depression acts through short-term synaptic dynamics to cancel redundant sensory signals.
    Harvey-Girard E; Lewis J; Maler L
    J Neurosci; 2010 Apr; 30(17):6152-69. PubMed ID: 20427673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spike-timing dependent synaptic plasticity: a phenomenological framework.
    Kistler WM
    Biol Cybern; 2002 Dec; 87(5-6):416-27. PubMed ID: 12461631
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity.
    Appleby PA; Elliott T
    Neural Comput; 2005 Nov; 17(11):2316-36. PubMed ID: 16156931
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synaptic organization and input-specific short-term plasticity in anterior cingulate cortical neurons with intact thalamic inputs.
    Lee CM; Chang WC; Chang KB; Shyu BC
    Eur J Neurosci; 2007 May; 25(9):2847-61. PubMed ID: 17561847
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The predictive brain: temporal coincidence and temporal order in synaptic learning mechanisms.
    Montague PR; Sejnowski TJ
    Learn Mem; 1994; 1(1):1-33. PubMed ID: 10467583
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cerebellum-like structures and their implications for cerebellar function.
    Bell CC; Han V; Sawtell NB
    Annu Rev Neurosci; 2008; 31():1-24. PubMed ID: 18275284
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synaptic dynamics on different time scales in a parallel fiber feedback pathway of the weakly electric fish.
    Lewis JE; Maler L
    J Neurophysiol; 2004 Feb; 91(2):1064-70. PubMed ID: 14602840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleus preeminentialis of mormyrid fish, a center for recurrent electrosensory feedback. I. Electrosensory and corollary discharge responses.
    von der Emde G; Bell CC
    J Neurophysiol; 1996 Sep; 76(3):1581-96. PubMed ID: 8890278
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spike timing-dependent plasticity alters electrosensory neuron synaptic strength in vitro but does not consistently predict changes in sensory tuning in vivo.
    Lube AJ; Ma X; Carlson BA
    J Neurophysiol; 2023 May; 129(5):1127-1144. PubMed ID: 37073981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spike-timing-dependent synaptic plasticity depends on dendritic location.
    Froemke RC; Poo MM; Dan Y
    Nature; 2005 Mar; 434(7030):221-5. PubMed ID: 15759002
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex.
    Gonzalez-Burgos G; Kroener S; Seamans JK; Lewis DA; Barrionuevo G
    J Neurophysiol; 2005 Dec; 94(6):4168-77. PubMed ID: 16148267
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparing for the unpredictable: adaptive feedback enhances the response to unexpected communication signals.
    Marsat G; Maler L
    J Neurophysiol; 2012 Feb; 107(4):1241-6. PubMed ID: 22157118
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity.
    Bell CC; Grant K
    J Neurophysiol; 1992 Sep; 68(3):859-75. PubMed ID: 1432053
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Internally Generated Predictions Enhance Neural and Behavioral Detection of Sensory Stimuli in an Electric Fish.
    Enikolopov AG; Abbott LF; Sawtell NB
    Neuron; 2018 Jul; 99(1):135-146.e3. PubMed ID: 30001507
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plastic corollary discharge predicts sensory consequences of movements in a cerebellum-like circuit.
    Requarth T; Sawtell NB
    Neuron; 2014 May; 82(4):896-907. PubMed ID: 24853945
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Random walks for spike-timing-dependent plasticity.
    Williams A; Leen TK; Roberts PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021916. PubMed ID: 15447524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.