These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
395 related articles for article (PubMed ID: 9153403)
1. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles. Luk AS; Kaler EW; Lee SP Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403 [TBL] [Abstract][Full Text] [Related]
2. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts. Narain PK; DeMaria EJ; Heuman DM J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899 [TBL] [Abstract][Full Text] [Related]
3. Adsorption of mixtures of bile salt taurine conjugates to lecithin-cholesterol membranes: implications for bile salt toxicity and cytoprotection. Heuman DM; Bajaj RS; Lin Q J Lipid Res; 1996 Mar; 37(3):562-73. PubMed ID: 8728319 [TBL] [Abstract][Full Text] [Related]
4. Structural characterization of the micelle-vesicle transition in lecithin-bile salt solutions. Long MA; Kaler EW; Lee SP Biophys J; 1994 Oct; 67(4):1733-42. PubMed ID: 7819505 [TBL] [Abstract][Full Text] [Related]
5. Effects of submicellar bile salt concentrations on biological membrane permeability to low molecular weight non-ionic solutes. Albalak A; Zeidel ML; Zucker SD; Jackson AA; Donovan JM Biochemistry; 1996 Jun; 35(24):7936-45. PubMed ID: 8672496 [TBL] [Abstract][Full Text] [Related]
6. Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile. Donovan JM; Timofeyeva N; Carey MC J Lipid Res; 1991 Sep; 32(9):1501-12. PubMed ID: 1753218 [TBL] [Abstract][Full Text] [Related]
7. Accurate separation of biliary lipid aggregates requires the correct intermixed micellar/intervesicular bile salt concentration. Donovan JM; Jackson AA Hepatology; 1998 Mar; 27(3):641-8. PubMed ID: 9500688 [TBL] [Abstract][Full Text] [Related]
8. Effects of hydrophobic and hydrophilic bile salt mixtures on cholesterol crystallization in model biles. Venneman NG; Huisman SJ; Moschetta A; vanBerge-Henegouwen GP; van Erpecum KJ Biochim Biophys Acta; 2002 Jul; 1583(2):221-8. PubMed ID: 12117566 [TBL] [Abstract][Full Text] [Related]
9. Estimation of cholesterol solubilization by a mixed micelle binding model in aqueous tauroursodeoxycholate:lecithin:cholesterol solutions. Higuchi WI; Tzeng CS; Chang SJ; Chiang HJ; Liu CL J Pharm Sci; 2008 Jan; 97(1):340-9. PubMed ID: 17786967 [TBL] [Abstract][Full Text] [Related]
10. Bile salt-membrane interactions and the physico-chemical mechanisms of bile salt toxicity. Heuman DM Ital J Gastroenterol; 1995 Sep; 27(7):372-5. PubMed ID: 8563009 [TBL] [Abstract][Full Text] [Related]
11. Stability of mixed micellar systems made by solubilizing phosphatidylcholine-cholesterol vesicles by bile salts. Lichtenberg D; Ragimova S; Bor A; Almog S; Vinkler C; Peled Y; Halpern Z Hepatology; 1990 Sep; 12(3 Pt 2):149S-153S; discussion 153S-154S. PubMed ID: 2210643 [TBL] [Abstract][Full Text] [Related]
12. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation. Cohen DE; Angelico M; Carey MC J Lipid Res; 1990 Jan; 31(1):55-70. PubMed ID: 2313205 [TBL] [Abstract][Full Text] [Related]
13. Combined interaction of phospholipase C and apolipoprotein A-I with small unilamellar lecithin-cholesterol vesicles: influence of apolipoprotein A-I concentration and vesicle composition. Gudheti MV; Lee SP; Danino D; Wrenn SP Biochemistry; 2005 May; 44(19):7294-304. PubMed ID: 15882068 [TBL] [Abstract][Full Text] [Related]
14. Membrane cholesterol content of cholesterol/phospholipid vesicles determines the susceptibility to both damage and protection by bile salts: implications for bile physiology. van de Heijning BJ; van den Broek AM; van Berge-Henegouwen GP Eur J Gastroenterol Hepatol; 1997 May; 9(5):473-9. PubMed ID: 9187880 [TBL] [Abstract][Full Text] [Related]
15. The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. Carey MC; Small DM J Clin Invest; 1978 Apr; 61(4):998-1026. PubMed ID: 659586 [TBL] [Abstract][Full Text] [Related]
16. Transbilayer movement of fully ionized taurine-conjugated bile salts depends upon bile salt concentration, hydrophobicity, and membrane cholesterol content. Donovan JM; Jackson AA Biochemistry; 1997 Sep; 36(38):11444-51. PubMed ID: 9298964 [TBL] [Abstract][Full Text] [Related]
17. Quasielastic light scattering studies of aqueous biliary lipid systems and native bile. Mazer NA Hepatology; 1990 Sep; 12(3 Pt 2):39S-44S. PubMed ID: 2210655 [TBL] [Abstract][Full Text] [Related]
18. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions. Mazer NA; Carey MC Biochemistry; 1983 Jan; 22(2):426-42. PubMed ID: 6824637 [TBL] [Abstract][Full Text] [Related]
19. Formation of mixed micelles and vesicles of human apolipoproteins A-I and A-II with synthetic and natural lecithins and the bile salt sodium taurocholate: quasi-elastic light scattering studies. Donovan JM; Benedek GB; Carey MC Biochemistry; 1987 Dec; 26(25):8215-33. PubMed ID: 3126801 [TBL] [Abstract][Full Text] [Related]
20. Solubilization of sphingomyelin vesicles by addition of a bile salt. Cárdenas M; Schillén K; Alfredsson V; Duan RD; Nyberg L; Arnebrant T Chem Phys Lipids; 2008 Jan; 151(1):10-7. PubMed ID: 17963701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]