These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 9153569)

  • 1. The synapse between LE sensory neurons and gill motoneurons makes only a small contribution to the Aplysia gill-withdrawal reflex.
    Hickie C; Cohen LB; Balaban PM
    Eur J Neurosci; 1997 Apr; 9(4):627-36. PubMed ID: 9153569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simplified preparation for relating cellular events to behavior: contribution of LE and unidentified siphon sensory neurons to mediation and habituation of the Aplysia gill- and siphon-withdrawal reflex.
    Frost L; Kaplan SW; Cohen TE; Henzi V; Kandel ER; Hawkins RD
    J Neurosci; 1997 Apr; 17(8):2900-13. PubMed ID: 9092611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitization of the gill and siphon withdrawal reflex of Aplysia: multiple sites of change in the neuronal network.
    Trudeau LE; Castellucci VF
    J Neurophysiol; 1993 Sep; 70(3):1210-20. PubMed ID: 8229169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of facilitation of monosynaptic PSPs to dishabituation and sensitization of the Aplysia siphon withdrawal reflex.
    Antonov I; Kandel ER; Hawkins RD
    J Neurosci; 1999 Dec; 19(23):10438-50. PubMed ID: 10575041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterosynaptic facilitation of tail sensory neuron synaptic transmission during habituation in tail-induced tail and siphon withdrawal reflexes of Aplysia.
    Stopfer M; Carew TJ
    J Neurosci; 1996 Aug; 16(16):4933-48. PubMed ID: 8756425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functions of the LE sensory neurons in Aplysia.
    Walters ET; Cohen LB
    Invert Neurosci; 1997 Jun; 3(1):15-25. PubMed ID: 9706699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of polysynaptic pathways in the mediation and plasticity of Aplysia gill and siphon withdrawal reflex: evidence for differential modulation.
    Trudeau LE; Castellucci VF
    J Neurosci; 1992 Oct; 12(10):3838-48. PubMed ID: 1328559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer of habituation in Aplysia: contribution of heterosynaptic pathways in habituation of the gill-withdrawal reflex.
    Goldberg JI; Lukowiak K
    J Neurobiol; 1984 Nov; 15(6):395-411. PubMed ID: 6097642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of activity-dependent synaptic plasticity to classical conditioning in Aplysia.
    Antonov I; Antonova I; Kandel ER; Hawkins RD
    J Neurosci; 2001 Aug; 21(16):6413-22. PubMed ID: 11487665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNS control over gill reflex behaviors in Aplysia: satiation causes an increase in the suppressive control in older but not young animals.
    Lukowiak K
    J Neurobiol; 1980 Nov; 11(6):591-611. PubMed ID: 7441242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional uncoupling of inhibitory interneurons plays an important role in short-term sensitization of Aplysia gill and siphon withdrawal reflex.
    Trudeau LE; Castellucci VF
    J Neurosci; 1993 May; 13(5):2126-35. PubMed ID: 8478692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory neuron produces heterosynaptic inhibition of the sensory-to-motor neuron synapse in Aplysia.
    Buonomano DV; Cleary LJ; Byrne JH
    Brain Res; 1992 Apr; 577(1):147-50. PubMed ID: 1521140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of synaptic depression, posttetanic potentiation, and presynaptic facilitation of synaptic potentials from sensory neurons mediating gill-withdrawal reflex in Aplysia.
    Gingrich KJ; Byrne JH
    J Neurophysiol; 1985 Mar; 53(3):652-69. PubMed ID: 2580065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical recording and information theoretic analysis of Aplysia gill-withdrawal reflex.
    Shiono S; Nakashima M; Yamada S; Matsumoto K
    Jpn J Physiol; 1993; 43 Suppl 1():S31-6. PubMed ID: 8271513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of individual mechanoreceptor sensory neurons to defensive gill-withdrawal reflex in Aplysia.
    Byrne JH; Castellucci VF; Kandel ER
    J Neurophysiol; 1978 Mar; 41(2):418-31. PubMed ID: 650275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of sensory to motor synaptic transmission and narrowing of the sensory neurone action potential by arginine vasotocin in Aplysia californica.
    Goldberg J; Colmers W; Edstrom J; Lukowiak K
    J Exp Biol; 1987 Mar; 128():47-62. PubMed ID: 3031194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel processing in an identified neural circuit: the Aplysia californica gill-withdrawal response model system.
    Leonard JL; Edstrom JP
    Biol Rev Camb Philos Soc; 2004 Feb; 79(1):1-59. PubMed ID: 15005172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A common presynaptic locus for the synaptic changes underlying short-term habituation and sensitization of the gill-withdrawal reflex in Aplysia.
    Kandel ER; Brunelli M; Byrne J; Castellucci V
    Cold Spring Harb Symp Quant Biol; 1976; 40():465-82. PubMed ID: 181201
    [No Abstract]   [Full Text] [Related]  

  • 19. Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia.
    Castellucci V; Pinsker H; Kupfermann I; Kandel ER
    Science; 1970 Mar; 167(3926):1745-8. PubMed ID: 5416543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulus-response relations and stability of mechanoreceptor and motor neurons mediating defensive gill-withdrawal reflex in Aplysia.
    Byrne JH; Castellucci VF; Carew TJ; Kandel ER
    J Neurophysiol; 1978 Mar; 41(2):402-17. PubMed ID: 650274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.