These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9153572)

  • 1. Visual activation in alpha-chloralose-anaesthetized cats does not cause lactate accumulation in the visual cortex as detected by [1H]NMR difference spectroscopy.
    Kauppinen RA; Eleff SM; Ulatowski JA; Kraut M; Soher B; van Zijl PC
    Eur J Neurosci; 1997 Apr; 9(4):654-61. PubMed ID: 9153572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic alterations in focally activated primary somatosensory cortex of alpha-chloralose-anesthetized rats measured by 1H MRS at 11.7 T.
    Xu S; Yang J; Li CQ; Zhu W; Shen J
    Neuroimage; 2005 Nov; 28(2):401-9. PubMed ID: 16182571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation.
    Chen W; Novotny EJ; Zhu XH; Rothman DL; Shulman RG
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):9896-900. PubMed ID: 8234332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual stimulation, 1H MR spectroscopy and fMRI of the human visual pathways.
    Boucard CC; Mostert JP; Cornelissen FW; De Keyser J; Oudkerk M; Sijens PE
    Eur Radiol; 2005 Jan; 15(1):47-52. PubMed ID: 15480690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy.
    Sappey-Marinier D; Calabrese G; Fein G; Hugg JW; Biggins C; Weiner MW
    J Cereb Blood Flow Metab; 1992 Jul; 12(4):584-92. PubMed ID: 1618937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decrease of glucose in the human visual cortex during photic stimulation.
    Merboldt KD; Bruhn H; Hänicke W; Michaelis T; Frahm J
    Magn Reson Med; 1992 May; 25(1):187-94. PubMed ID: 1593951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation.
    Prichard J; Rothman D; Novotny E; Petroff O; Kuwabara T; Avison M; Howseman A; Hanstock C; Shulman R
    Proc Natl Acad Sci U S A; 1991 Jul; 88(13):5829-31. PubMed ID: 2062861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Analysis of cortical evoked potentials with registration by layers].
    Batuev AS; Pirogov AA
    Fiziol Zh SSSR Im I M Sechenova; 1970 Apr; 56(4):518-26. PubMed ID: 5496324
    [No Abstract]   [Full Text] [Related]  

  • 9. Neurometabolic coupling between neural activity, glucose, and lactate in activated visual cortex.
    Li B; Freeman RD
    J Neurochem; 2015 Nov; 135(4):742-54. PubMed ID: 25930947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal covariance of pre- and postsynaptic activity regulates functional connectivity in the visual cortex.
    Frégnac Y; Burke JP; Smith D; Friedlander MJ
    J Neurophysiol; 1994 Apr; 71(4):1403-21. PubMed ID: 8035224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial encephalomyopathy: elevated visual cortex lactate unresponsive to photic stimulation--a localized 1H-MRS study.
    Kuwabara T; Watanabe H; Tanaka K; Tsuji S; Ohkubo M; Ito T; Sakai K; Yuasa T
    Neurology; 1994 Mar; 44(3 Pt 1):557-9. PubMed ID: 8145933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain lactate responses during visual stimulation in fasting and hyperglycemic subjects: a proton magnetic resonance spectroscopy study at 1.5 Tesla.
    Maddock RJ; Buonocore MH; Lavoie SP; Copeland LE; Kile SJ; Richards AL; Ryan JM
    Psychiatry Res; 2006 Nov; 148(1):47-54. PubMed ID: 17020804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response covariance in cat visual cortex.
    van Kan PL; Scobey RP; Gabor AJ
    Exp Brain Res; 1985; 60(3):559-63. PubMed ID: 4076377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of single-voxel 1H-MRS in investigating the metabolism of the activated human visual cortex at 7 T.
    Mangia S; Tkác I; Gruetter R; Van De Moortele PF; Giove F; Maraviglia B; Uğurbil K
    Magn Reson Imaging; 2006 May; 24(4):343-8. PubMed ID: 16677939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of metabolite changes in response to a varying visual stimulation paradigm using short-TE
    Mekle R; Kühn S; Pfeiffer H; Aydin S; Schubert F; Ittermann B
    NMR Biomed; 2017 Feb; 30(2):. PubMed ID: 28008663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced temporal non-linearities in human object-related occipito-temporal cortex.
    Mukamel R; Harel M; Hendler T; Malach R
    Cereb Cortex; 2004 May; 14(5):575-85. PubMed ID: 15054073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased oxygen consumption in the somatosensory cortex of alpha-chloralose anesthetized rats during forepaw stimulation determined using MRS at 11.7 Tesla.
    Yang J; Shen J
    Neuroimage; 2006 Sep; 32(3):1317-25. PubMed ID: 16797191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo assessment of focal brain lactate alterations with NMR proton spectroscopy.
    Hanstock CC; Boisvert DP; Bendall MR; Allen PS
    J Cereb Blood Flow Metab; 1988 Apr; 8(2):208-14. PubMed ID: 2830290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence of tectal and visual cortex input to pericruciate neurons.
    Dubrovsky B; Garcia-Rill E
    Exp Neurol; 1971 Dec; 33(3):475-84. PubMed ID: 5132195
    [No Abstract]   [Full Text] [Related]  

  • 20. Neuronal generators of visual evoked potentials in humans: visual processing in the human cortex.
    Arroyo S; Lesser RP; Poon WT; Webber WR; Gordon B
    Epilepsia; 1997 May; 38(5):600-10. PubMed ID: 9184607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.