BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 9153589)

  • 1. Multiple types of Ca2+ channels in mouse motor nerve terminals.
    Lin MJ; Lin-Shiau SY
    Eur J Neurosci; 1997 Apr; 9(4):817-23. PubMed ID: 9153589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of N-, P- and Q-type neuronal calcium channel antagonists on mammalian peripheral neurotransmission.
    Wright CE; Angus JA
    Br J Pharmacol; 1996 Sep; 119(1):49-56. PubMed ID: 8872356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive transfer of Lambert-Eaton myasthenic syndrome induces dihydropyridine sensitivity of ICa in mouse motor nerve terminals.
    Xu YF; Hewett SJ; Atchison WD
    J Neurophysiol; 1998 Sep; 80(3):1056-69. PubMed ID: 9744921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Block of non-L-, non-N-type Ca2+ channels in rat insulinoma RINm5F cells by omega-agatoxin IVA and omega-conotoxin MVIIC.
    Magnelli V; Pollo A; Sher E; Carbone E
    Pflugers Arch; 1995 Apr; 429(6):762-71. PubMed ID: 7603830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions.
    Rosato Siri MD; Uchitel OD
    J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):533-40. PubMed ID: 9852333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of omega-agatoxin-IVA and omega-conotoxin-MVIIC on perineurial Ca++ and Ca(++)-activated K+ currents of mouse motor nerve terminals.
    Xu YF; Atchison WD
    J Pharmacol Exp Ther; 1996 Dec; 279(3):1229-36. PubMed ID: 8968345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic calcium channels mediating synaptic transmission in submucosal neurones of the guinea-pig caecum.
    Cunningham SM; Mihara S; Higashi H
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):425-35. PubMed ID: 9575292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional assessment of Ca(2+)-current in the mouse motor nerve terminals.
    Lin MJ; Lin-Shiau SY
    Neurosci Lett; 1995 Jul; 195(1):21-4. PubMed ID: 7478245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons.
    Scholz KP; Miller RJ
    J Neurosci; 1995 Jun; 15(6):4612-7. PubMed ID: 7790927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of invertebrate peptide toxins to establish Ca2+ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices.
    Nooney JM; Lodge D
    Eur J Pharmacol; 1996 Jun; 306(1-3):41-50. PubMed ID: 8813613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Ca2+ channel blocker neurotoxins on transmitter release and presynaptic currents at the mouse neuromuscular junction.
    Katz E; Protti DA; Ferro PA; Rosato Siri MD; Uchitel OD
    Br J Pharmacol; 1997 Aug; 121(8):1531-40. PubMed ID: 9283685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal ganglion neurons express a toxin-resistant developmentally regulated novel type of high-voltage-activated calcium channel.
    Rothe T; Grantyn R
    J Neurophysiol; 1994 Nov; 72(5):2542-6. PubMed ID: 7884480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of acetylcholine release from mouse motor nerve by a P-type calcium channel blocker, omega-agatoxin IVA.
    Hong SJ; Chang CC
    J Physiol; 1995 Jan; 482 ( Pt 2)(Pt 2):283-90. PubMed ID: 7714822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for Q type Ca2+ channels in neurotransmission in the rat urinary bladder.
    Frew R; Lundy PM
    Br J Pharmacol; 1995 Sep; 116(1):1595-8. PubMed ID: 8564224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the type of calcium channel primarily regulating GABA exocytosis from brain nerve endings.
    Sitges M; Chiu LM
    Neurochem Res; 1995 Sep; 20(9):1073-80. PubMed ID: 8570012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mu-opioid and GABA(B) receptors modulate different types of Ca2+ currents in rat nodose ganglion neurons.
    Rusin KI; Moises HC
    Neuroscience; 1998 Aug; 85(3):939-56. PubMed ID: 9639286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of calcium channel current components in mouse chromaffin cells superfused with low- and high-barium solutions.
    Hernández-Guijo JM; de Pascual R; García AG; Gandía L
    Pflugers Arch; 1998 Jun; 436(1):75-82. PubMed ID: 9560449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium channels coupled to neurotransmitter release at dually innervated neuromuscular junctions in the newborn rat.
    Santafé MM; Garcia N; Lanuza MA; Uchitel OD; Tomás J
    Neuroscience; 2001; 102(3):697-708. PubMed ID: 11226706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxityping rat brain calcium channels with omega-toxins from spider and cone snail venoms.
    Adams ME; Myers RA; Imperial JS; Olivera BM
    Biochemistry; 1993 Nov; 32(47):12566-70. PubMed ID: 8251474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of potassium-evoked [3H]dopamine release from rat striatal slices by voltage-activated calcium channel ligands: effects of omega-conotoxin-MVIIC.
    Dobrev D; Andreas K
    Neurochem Res; 1997 Sep; 22(9):1085-93. PubMed ID: 9251097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.