BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9154003)

  • 21. Computer analyses reveal a hobo-like element in the nematode Caenorhabditis elegans, which presents a conserved transposase domain common with the Tc1-Mariner transposon family.
    Bigot Y; Augé-Gouillou C; Periquet G
    Gene; 1996 Oct; 174(2):265-71. PubMed ID: 8890745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loss of transposase-DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome.
    Lampe DJ; Walden KK; Robertson HM
    Mol Biol Evol; 2001 Jun; 18(6):954-61. PubMed ID: 11371583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyperactive transposase mutants of the Himar1 mariner transposon.
    Lampe DJ; Akerley BJ; Rubin EJ; Mekalanos JJ; Robertson HM
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):11428-33. PubMed ID: 10500193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conservation of Palindromic and Mirror Motifs within Inverted Terminal Repeats of mariner-like Elements.
    Bigot Y; Brillet B; Augé-Gouillou C
    J Mol Biol; 2005 Aug; 351(1):108-16. PubMed ID: 15946679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subunit interactions in the mariner transposase.
    Lohe AR; Sullivan DT; Hartl DL
    Genetics; 1996 Nov; 144(3):1087-95. PubMed ID: 8913752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania.
    Gueiros-Filho FJ; Beverley SM
    Science; 1997 Jun; 276(5319):1716-9. PubMed ID: 9180085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends.
    Miskey C; Papp B; Mátés L; Sinzelle L; Keller H; Izsvák Z; Ivics Z
    Mol Cell Biol; 2007 Jun; 27(12):4589-600. PubMed ID: 17403897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons.
    Pietrokovski S; Henikoff S
    Mol Gen Genet; 1997 May; 254(6):689-95. PubMed ID: 9202385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mariner transposase-like sequences from the Hessian fly, Mayetiola destructor.
    Shukle RH; Russell VW
    J Hered; 1995; 86(5):364-8. PubMed ID: 7560872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic transformation of Drosophila cells in culture by P element-mediated transposition.
    Segal D; Cherbas L; Cherbas P
    Somat Cell Mol Genet; 1996 Mar; 22(2):159-65. PubMed ID: 8782495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of IS10 transposase separation of function mutants: identification of amino acid residues in transposase that are important for active site function and the stability of transposition intermediates.
    Kennedy AK; Haniford DB
    J Mol Biol; 1996 Mar; 256(3):533-47. PubMed ID: 8604136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular characterization and phylogenetic position of a new mariner-like element in the coastal crab, Pachygrapsus marmoratus.
    Bui QT; Delaurière L; Casse N; Nicolas V; Laulier M; Chénais B
    Gene; 2007 Jul; 396(2):248-56. PubMed ID: 17490833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unexpected stability of mariner transgenes in Drosophila.
    Lozovsky ER; Nurminsky D; Wimmer EA; Hartl DL
    Genetics; 2002 Feb; 160(2):527-35. PubMed ID: 11861559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mariner sails into Leishmania.
    Hartl DL
    Science; 1997 Jun; 276(5319):1659-60. PubMed ID: 9206830
    [No Abstract]   [Full Text] [Related]  

  • 35. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera.
    Robertson HM; Lampe DJ
    Mol Biol Evol; 1995 Sep; 12(5):850-62. PubMed ID: 7476131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements.
    Lohe AR; Moriyama EN; Lidholm DA; Hartl DL
    Mol Biol Evol; 1995 Jan; 12(1):62-72. PubMed ID: 7877497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transposition without transposase: a spontaneous mutation in bacteria.
    Rappleye CA; Roth JR
    J Bacteriol; 1997 Mar; 179(6):2047-52. PubMed ID: 9068653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs.
    Feschotte C; Osterlund MT; Peeler R; Wessler SR
    Nucleic Acids Res; 2005; 33(7):2153-65. PubMed ID: 15831788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient mobilization of mariner in vivo requires multiple internal sequences.
    Lohe AR; Hartl DL
    Genetics; 2002 Feb; 160(2):519-26. PubMed ID: 11861558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transposition of the mariner element from Drosophila mauritiana in zebrafish.
    Fadool JM; Hartl DL; Dowling JE
    Proc Natl Acad Sci U S A; 1998 Apr; 95(9):5182-6. PubMed ID: 9560250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.