BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9154327)

  • 1. KATP-channel on the somata of spiny neurones in rat caudate nucleus: regulation by drugs and nucleotides.
    Schwanstecher C; Bassen D
    Br J Pharmacol; 1997 May; 121(2):193-8. PubMed ID: 9154327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic nucleotides enhance the tolbutamide sensitivity of the ATP-dependent K+ channel in mouse pancreatic B cells by their combined actions at inhibitory and stimulatory receptors.
    Schwanstecher C; Dickel C; Panten U
    Mol Pharmacol; 1992 Mar; 41(3):480-6. PubMed ID: 1545776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of tolbutamide and cytosolic nucleotides in controlling the ATP-sensitive K+ channel in mouse beta-cells.
    Schwanstecher C; Dickel C; Panten U
    Br J Pharmacol; 1994 Jan; 111(1):302-10. PubMed ID: 8012711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of an ATP-sensitive K+ channel in spiny neurons of rat caudate nucleus.
    Schwanstecher C; Panten U
    Pflugers Arch; 1994 May; 427(1-2):187-9. PubMed ID: 8058471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage dependent inhibition of ATP sensitive potassium channels by flecainide in guinea pig ventricular cells.
    Wang DW; Sato T; Arita M
    Cardiovasc Res; 1995 Apr; 29(4):520-5. PubMed ID: 7796446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-sensitive K+ channels of skeletal muscle fibers from young adult and aged rats: possible involvement of thiol-dependent redox mechanisms in the age-related modifications of their biophysical and pharmacological properties.
    Tricarico D; Camerino DC
    Mol Pharmacol; 1994 Oct; 46(4):754-61. PubMed ID: 7969056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that glucose-induced electrical activity in rat pancreatic beta-cells does not require KATP channel inhibition.
    Best L
    J Membr Biol; 2002 Feb; 185(3):193-200. PubMed ID: 11891577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KR-30450, a newly synthesized benzopyran derivative, activates the cardiac ATP-sensitive K+ channel.
    Kwak YG; Park SK; Kang HS; Kim JS; Chae SW; Cho KP; Yoo SE; Kim D
    J Pharmacol Exp Ther; 1995 Nov; 275(2):807-12. PubMed ID: 7473170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of ATP-sensitive and large-conductance Ca++-activated K+ channels by Zeneca ZD6169 in guinea pig bladder smooth muscle cells.
    Hu S; Kim HS
    J Pharmacol Exp Ther; 1997 Jan; 280(1):38-45. PubMed ID: 8996179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diazoxide-sensitivity of the adenosine 5'-triphosphate-dependent K+ channel in mouse pancreatic beta-cells.
    Schwanstecher C; Dickel C; Ebers I; Lins S; Zünkler BJ; Panten U
    Br J Pharmacol; 1992 Sep; 107(1):87-94. PubMed ID: 1422580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonistic regulation of native Ca2+- and ATP-sensitive cation channels in brain capillaries by nucleotides and decavanadate.
    Csanády L; Adam-Vizi V
    J Gen Physiol; 2004 Jun; 123(6):743-57. PubMed ID: 15173222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of tolbutamide on vascular ATP-sensitive potassium channels in humans. Comparison with literature data on glibenclamide and glimepiride.
    Bijlstra PJ; Russel FG; Thien T; Lutterman JA; Smits P
    Horm Metab Res; 1996 Sep; 28(9):512-6. PubMed ID: 8911989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cocaine-induced inhibition of ATP-sensitive K+ channels in rat ventricular myocytes and in heart-derived H9c2 cells.
    Wu SN; Chang HD; Sung RJ
    Basic Clin Pharmacol Toxicol; 2006 May; 98(5):510-7. PubMed ID: 16635111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of cardiac ATP-sensitive K+ channels by KRN4884, a novel K+ channel opener.
    Shinbo A; Ono K; Iijima T
    J Pharmacol Exp Ther; 1997 Nov; 283(2):770-7. PubMed ID: 9353397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse effects of pinacidil on KATP channels in mouse skeletal muscle in the presence of different nucleotides.
    Hehl S; Neumcke B
    Cardiovasc Res; 1994 Jun; 28(6):841-6. PubMed ID: 7923289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iptakalim, a vascular ATP-sensitive potassium (KATP) channel opener, closes rat pancreatic beta-cell KATP channels and increases insulin release.
    Misaki N; Mao X; Lin YF; Suga S; Li GH; Liu Q; Chang Y; Wang H; Wakui M; Wu J
    J Pharmacol Exp Ther; 2007 Aug; 322(2):871-8. PubMed ID: 17522344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional receptors in Xenopus oocytes for U-37883A, a novel ATP-sensitive K+ channel blocker: comparison with rat insulinoma cells.
    Guillemare E; Honore E; De Weille J; Fosset M; Lazdunski M; Meisheri K
    Mol Pharmacol; 1994 Jul; 46(1):139-45. PubMed ID: 8058048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the ATP-sensitive potassium channels (KATP) expressed in guinea pig bladder smooth muscle cells.
    Gopalakrishnan M; Whiteaker KL; Molinari EJ; Davis-Taber R; Scott VE; Shieh CC; Buckner SA; Milicic I; Cain JC; Postl S; Sullivan JP; Brioni JD
    J Pharmacol Exp Ther; 1999 Apr; 289(1):551-8. PubMed ID: 10087049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons.
    Davies NW
    Nature; 1990 Jan; 343(6256):375-7. PubMed ID: 2153936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches.
    Lederer WJ; Nichols CG
    J Physiol; 1989 Dec; 419():193-211. PubMed ID: 2621629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.