BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 9154330)

  • 1. A neuromodulatory role for neuronal nitric oxide in the rabbit renal artery.
    Vials AJ; Crowe R; Burnstock G
    Br J Pharmacol; 1997 May; 121(2):213-20. PubMed ID: 9154330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal nitric-oxide synthase inhibition facilitates adrenergic neurotransmission in rat mesenteric resistance arteries.
    Hatanaka Y; Hobara N; Honghua J; Akiyama S; Nawa H; Kobayashi Y; Takayama F; Gomita Y; Kawasaki H
    J Pharmacol Exp Ther; 2006 Feb; 316(2):490-7. PubMed ID: 16236814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sex differences in the relative contributions of nitric oxide and EDHF to agonist-stimulated endothelium-dependent relaxations in the rat isolated mesenteric arterial bed.
    McCulloch AI; Randall MD
    Br J Pharmacol; 1998 Apr; 123(8):1700-6. PubMed ID: 9605578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal nitric oxide synthase activation by vasoactive intestinal peptide in bovine cerebral arteries.
    González C; Barroso C; Martín C; Gulbenkian S; Estrada C
    J Cereb Blood Flow Metab; 1997 Sep; 17(9):977-84. PubMed ID: 9307611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide inhibition simulates the enhancement of alpha 1 agonist-induced vasoconstriction in diabetes.
    Dresner LS; Wang SP; West MW; Ponomarenko IN; Mueller CM; Wait RB
    J Surg Res; 1997 Jul; 70(2):119-23. PubMed ID: 9245559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear-induced modulation by nitric oxide of sympathetic nerves in the superior mesenteric artery.
    Macedo MP; Lautt WW
    Can J Physiol Pharmacol; 1996 Jun; 74(6):692-700. PubMed ID: 8909781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AT2-antagonist sensitive potentiation of angiotensin II-induced vasoconstrictions by blockade of nitric oxide synthesis in rat renal vasculature.
    Muller C; Endlich K; Barthelmebs M; Helwig JJ
    Br J Pharmacol; 1997 Dec; 122(7):1495-501. PubMed ID: 9421301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of endothelin receptors, calcium and nitric oxide in the potentiation by endothelin-1 of the sympathetic contraction of rabbit ear artery during cooling.
    García-Villalón AL; Padilla J; Fernández N; Monge L; Gómez B; Diéguez G
    Br J Pharmacol; 1997 Aug; 121(8):1659-64. PubMed ID: 9283700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of erythropoietin and nitric oxide in modulating the tone of human renal interlobular and subcutaneous arteries from uraemic subjects.
    Wu XC; Richards NT; Johns EJ
    Clin Sci (Lond); 1999 Dec; 97(6):639-47. PubMed ID: 10585891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered function of nitrergic nerves inhibiting sympathetic neurotransmission in mesenteric vascular beds of renovascular hypertensive rats.
    Koyama T; Hatanaka Y; Jin X; Yokomizo A; Fujiwara H; Goda M; Hobara N; Zamami Y; Kitamura Y; Kawasaki H
    Hypertens Res; 2010 May; 33(5):485-91. PubMed ID: 20379183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative roles of endothelial relaxing factors in cyclosporine-induced impairment of cholinergic and beta-adrenergic renal vasodilations.
    El-Mas MM; Mohy El-Din MM; El-Gowilly SM; Sharabi FM
    Eur J Pharmacol; 2004 Mar; 487(1-3):149-58. PubMed ID: 15033387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric-oxide synthase-containing nerves facilitate adrenergic transmitter release in sheep middle cerebral arteries.
    Mbaku EN; Zhang L; Duckles SP; Buchholz J
    J Pharmacol Exp Ther; 2000 May; 293(2):397-402. PubMed ID: 10773008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of prostaglandins and nitric oxide on the renal effects of angiotensin II in the anaesthetized rat.
    Clayton JS; Clark KL; Johns EJ; Drew GM
    Br J Pharmacol; 1998 Aug; 124(7):1467-74. PubMed ID: 9723960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide and endothelium-dependent constriction to flow in porcine small pulmonary arteries.
    Liu Q; Wiener CM; Flavahan NA
    Br J Pharmacol; 1998 May; 124(2):331-6. PubMed ID: 9641550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of neuronal nitric oxide in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats.
    Jendzjowsky NG; DeLorey DS
    J Appl Physiol (1985); 2013 Jul; 115(1):97-106. PubMed ID: 23640592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of endothelium and nitric oxide in the in vitro response of equine colonic venous rings to vasoconstrictor agents.
    Moore RM; Venugopalan CS; Sedrish SA; Holmes EP
    Am J Vet Res; 1997 Oct; 58(10):1145-51. PubMed ID: 9328669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of protein kinase C in electrical-stimulation-induced neuronal nitric oxide release in mesenteric arteries from hypertensive rats.
    Marín J; Ferrer M; Balfagón G
    Clin Sci (Lond); 2000 Oct; 99(4):277-83. PubMed ID: 10995592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment of smooth muscle function of rat thoracic aorta in an endothelium-independent manner by long-term administration of N(G)-nitro-L-arginine methyl ester.
    López RM; Ortíz CS; Ruíz A; Vélez JM; Castillo C; Castillo EF
    Fundam Clin Pharmacol; 2004 Dec; 18(6):669-77. PubMed ID: 15548238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuation of vasoconstriction by endogenous nitric oxide in rat caudal artery.
    Vo PA; Reid JJ; Rand MJ
    Br J Pharmacol; 1992 Dec; 107(4):1121-8. PubMed ID: 1467834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurogenic contraction and relaxation of human penile deep dorsal vein.
    Segarra G; Medina P; Domenech C; Martínez León JB; Vila JM; Aldasoro M; Lluch S
    Br J Pharmacol; 1998 Jun; 124(4):788-94. PubMed ID: 9690872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.