These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 9154832)

  • 1. The absence of the transcription activator TFE3 impairs activation of B cells in vivo.
    Merrell K; Wells S; Henderson A; Gorman J; Alt F; Stall A; Calame K
    Mol Cell Biol; 1997 Jun; 17(6):3335-44. PubMed ID: 9154832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective utilization of basic helix-loop-helix-leucine zipper proteins at the immunoglobulin heavy-chain enhancer.
    Carter RS; Ordentlich P; Kadesch T
    Mol Cell Biol; 1997 Jan; 17(1):18-23. PubMed ID: 8972181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The basic helix-loop-helix-zipper domain of TFE3 mediates enhancer-promoter interaction.
    Artandi SE; Cooper C; Shrivastava A; Calame K
    Mol Cell Biol; 1994 Dec; 14(12):7704-16. PubMed ID: 7969114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-protein-DNA complex on a B cell-specific domain of the immunoglobulin mu heavy chain gene enhancer.
    Rao E; Dang W; Tian G; Sen R
    J Biol Chem; 1997 Mar; 272(10):6722-32. PubMed ID: 9045705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The leucine zipper of TFE3 dictates helix-loop-helix dimerization specificity.
    Beckmann H; Kadesch T
    Genes Dev; 1991 Jun; 5(6):1057-66. PubMed ID: 2044953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation.
    Zhao GQ; Zhao Q; Zhou X; Mattei MG; de Crombrugghe B
    Mol Cell Biol; 1993 Aug; 13(8):4505-12. PubMed ID: 8336698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TFE3 contains two activation domains, one acidic and the other proline-rich, that synergistically activate transcription.
    Artandi SE; Merrell K; Avitahl N; Wong KK; Calame K
    Nucleic Acids Res; 1995 Oct; 23(19):3865-71. PubMed ID: 7479029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TFE3, a transcription factor homologous to microphthalmia, is a potential transcriptional activator of tyrosinase and TyrpI genes.
    Verastegui C; Bertolotto C; Bille K; Abbe P; Ortonne JP; Ballotti R
    Mol Endocrinol; 2000 Mar; 14(3):449-56. PubMed ID: 10707962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif.
    Beckmann H; Su LK; Kadesch T
    Genes Dev; 1990 Feb; 4(2):167-79. PubMed ID: 2338243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mTFE3, an X-linked transcriptional activator containing basic helix-loop-helix and zipper domains, utilizes the zipper to stabilize both DNA binding and multimerization.
    Roman C; Matera AG; Cooper C; Artandi S; Blain S; Ward DC; Calame K
    Mol Cell Biol; 1992 Feb; 12(2):817-27. PubMed ID: 1732746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-resolving osteopetrosis: a rat model implicating microphthalmia and the related transcription factor TFE3.
    Weilbaecher KN; Hershey CL; Takemoto CM; Horstmann MA; Hemesath TJ; Tashjian AH; Fisher DE
    J Exp Med; 1998 Mar; 187(5):775-85. PubMed ID: 9480987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the dimerization mechanism of human transcription factor E3.
    Yang G; Li P; Liu Z; Wu S; Zhuang C; Qiao H; Zheng L; Fang P; Lei C; Wang J
    Biochem Biophys Res Commun; 2021 Sep; 569():41-46. PubMed ID: 34225079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitf and Tfe3: members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function.
    Hershey CL; Fisher DE
    Bone; 2004 Apr; 34(4):689-96. PubMed ID: 15050900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The gene encoding human TFE3, a transcription factor that binds the immunoglobulin heavy-chain enhancer, maps to Xp11.22.
    Henthorn PS; Stewart CC; Kadesch T; Puck JM
    Genomics; 1991 Oct; 11(2):374-8. PubMed ID: 1685140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional activation by ETS and leucine zipper-containing basic helix-loop-helix proteins.
    Tian G; Erman B; Ishii H; Gangopadhyay SS; Sen R
    Mol Cell Biol; 1999 Apr; 19(4):2946-57. PubMed ID: 10082562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene.
    Hua X; Liu X; Ansari DO; Lodish HF
    Genes Dev; 1998 Oct; 12(19):3084-95. PubMed ID: 9765209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Both Max and TFE3 cooperate with Smad proteins to bind the plasminogen activator inhibitor-1 promoter, but they have opposite effects on transcriptional activity.
    Grinberg AV; Kerppola T
    J Biol Chem; 2003 Mar; 278(13):11227-36. PubMed ID: 12551947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different basic helix-loop-helix leucine zipper factors on the glucose response unit of the L-type pyruvate kinase gene.
    Moriizumi S; Gourdon L; Lefrançois-Martinez AM; Kahn A; Raymondjean M
    Gene Expr; 1998; 7(2):103-13. PubMed ID: 9699482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The basic helix-loop-helix transcription factor E2-2 is involved in T lymphocyte development.
    Bergqvist I; Eriksson M; Saarikettu J; Eriksson B; Corneliussen B; Grundström T; Holmberg D
    Eur J Immunol; 2000 Oct; 30(10):2857-63. PubMed ID: 11069067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise alignment of sites required for mu enhancer activation in B cells.
    Nikolajczyk BS; Nelsen B; Sen R
    Mol Cell Biol; 1996 Aug; 16(8):4544-54. PubMed ID: 8754855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.