BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 9154874)

  • 1. Methacholine responsiveness using the raised volume forced expiration technique in infants.
    Hayden MJ; Devadason SG; Sly PD; Wildhaber JH; LeSouëf PN
    Am J Respir Crit Care Med; 1997 May; 155(5):1670-5. PubMed ID: 9154874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new technique to generate and assess forced expiration from raised lung volume in infants.
    Turner DJ; Stick SM; Lesouëf KL; Sly PD; Lesouëf PN
    Am J Respir Crit Care Med; 1995 May; 151(5):1441-50. PubMed ID: 7735598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Avoiding deep inspirations increases the maximal response to methacholine without altering sensitivity in non-asthmatics.
    Chapman DG; King GG; Berend N; Diba C; Salome CM
    Respir Physiol Neurobiol; 2010 Sep; 173(2):157-63. PubMed ID: 20688195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of driving pressure on raised-volume forced expiration in infants.
    Hayden MJ; Sly PD; Devadason SG; Gurrin LC; Wildhaber JH; LeSouëf PN
    Am J Respir Crit Care Med; 1997 Dec; 156(6):1876-83. PubMed ID: 9412569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methacholine-induced lung function changes measured with infant body plethysmography.
    Malmberg LP; von Wright L; Kotaniemi-Syrjänen A; Malmström K; Pelkonen AS; Mäkelä MJ
    Pediatr Pulmonol; 2011 Apr; 46(4):362-8. PubMed ID: 20967846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bronchodilator responsiveness testing using raised volume forced expiration in recurrently wheezing infants.
    Hayden MJ; Wildhaber JH; LeSouëf PN
    Pediatr Pulmonol; 1998 Jul; 26(1):35-41. PubMed ID: 9710278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep inspirations protect against airway closure in nonasthmatic subjects.
    Chapman DG; Berend N; King GG; McParland BE; Salome CM
    J Appl Physiol (1985); 2009 Aug; 107(2):564-9. PubMed ID: 19443748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of forced expiratory volume-time parameters in detecting histamine-induced bronchoconstriction in wheezy infants.
    Turner DJ; Sly PD; LeSouëf PN
    Pediatr Pulmonol; 1993 Apr; 15(4):220-4. PubMed ID: 8469574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tidal volume forced expiration in asthmatic infants: reproducibility and reversibility tests.
    Lagerstrand L; Ingemansson M; Bergström SE; Lidberg K; Hedlin G
    Respiration; 2002; 69(5):389-96. PubMed ID: 12232445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between airway sensitivity to adenosine 5' monophosphate and the shape of the concentration-response curve to methacholine in subjects with allergic rhinitis.
    Prieto L; Gutiérrez V; Marín J
    Respir Med; 2001 Jun; 95(6):457-63. PubMed ID: 11421502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airway responsiveness as a direct factor contributing to the dyspnoea perception in asthma.
    Koh YI; Choi IS; Lim H
    Respir Med; 2001 Jun; 95(6):464-70. PubMed ID: 11421503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of inhaled formoterol in reversing bronchoconstriction.
    Rubin AS; Perin C; Pelegrin L; Fernandes JC; da Silva LC
    J Bras Pneumol; 2006; 32(3):202-6. PubMed ID: 17273608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved detection of abnormal respiratory function using forced expiration from raised lung volume in infants with cystic fibrosis.
    Turner DJ; Lanteri CJ; LeSouef PN; Sly PD
    Eur Respir J; 1994 Nov; 7(11):1995-9. PubMed ID: 7875271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep inspiration volume and the impaired reversal of bronchoconstriction in asthma.
    Hulme KM; Salome CM; Brown NJ; Berend N; Agus HM; Horlyck KR; King GG; Chapman DG
    Respir Physiol Neurobiol; 2013 Dec; 189(3):506-12. PubMed ID: 23994826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bronchial reactivity to cigarette smoke in smokers: repeatability, relationship to methacholine reactivity, smoking and atopy.
    Jensen EJ; Dahl R; Steffensen F
    Eur Respir J; 1998 Mar; 11(3):670-6. PubMed ID: 9596120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined forced oscillation and forced expiration measurements in mice for the assessment of airway hyperresponsiveness.
    Shalaby KH; Gold LG; Schuessler TF; Martin JG; Robichaud A
    Respir Res; 2010 Jun; 11(1):82. PubMed ID: 20565957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of maximal airway narrowing to methacholine between children and adults.
    de Pee S; Timmers MC; Hermans J; Duiverman EJ; Sterk PJ
    Eur Respir J; 1991 Apr; 4(4):421-8. PubMed ID: 1855570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung function changes following methacholine inhalation in COPD.
    Walker PP; Hadcroft J; Costello RW; Calverley PM
    Respir Med; 2009 Apr; 103(4):535-41. PubMed ID: 19081234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the relationship between forced maximal flow at functional residual capacity and parameters of forced expiration from raised lung volume in healthy infants.
    Ranganathan SC; Hoo AF; Lum SY; Goetz I; Castle RA; Stocks J
    Pediatr Pulmonol; 2002 Jun; 33(6):419-28. PubMed ID: 12001274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partitioning of pulmonary responses to inhaled methacholine in subjects with asymptomatic asthma.
    Ohrui T; Sekizawa K; Yanai M; Morikawa M; Jin Y; Sasaki H; Takishima T
    Am Rev Respir Dis; 1992 Dec; 146(6):1501-5. PubMed ID: 1456567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.