These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 9154928)

  • 21. Probing conformational plasticity of the activation domain of trypsin: the role of glycine hinges.
    Gombos L; Kardos J; Patthy A; Medveczky P; Szilágyi L; Málnási-Csizmadia A; Gráf L
    Biochemistry; 2008 Feb; 47(6):1675-84. PubMed ID: 18193894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-level bacterial expression and 15N-alanine-labeling of bovine trypsin. Application to the study of trypsin-inhibitor complexes and trypsinogen activation by NMR spectroscopy.
    Peterson FC; Gordon NC; Gettins PG
    Biochemistry; 2001 May; 40(21):6275-83. PubMed ID: 11371189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hepatocyte uptake of alpha 1-proteinase inhibitor-trypsin complexes in vitro: evidence for a shared uptake mechanism for proteinase complexes of alpha 1-proteinase inhibitor and antithrombin III.
    Fuchs HE; Michalopoulos GK; Pizzo SV
    J Cell Biochem; 1984; 25(4):231-43. PubMed ID: 6334690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. alpha1-Proteinase inhibitor forms initial non-covalent and final covalent complexes with elastase analogously to other serpin-proteinase pairs, suggesting a common mechanism of inhibition.
    Dobó J; Gettins PG
    J Biol Chem; 2004 Mar; 279(10):9264-9. PubMed ID: 14593107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acid-induced molten globule state of a fully active mutant of human interleukin-6.
    De Filippis V; de Laureto PP; Toniutti N; Fontana A
    Biochemistry; 1996 Sep; 35(35):11503-11. PubMed ID: 8784206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor.
    Liu Y; Breslauer K; Anderson S
    Biochemistry; 1997 May; 36(18):5323-35. PubMed ID: 9154914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Viscous drag as the source of active site perturbation during protease translocation: insights into how inhibitory processes are controlled by serpin metastability.
    Shin JS; Yu MH
    J Mol Biol; 2006 Jun; 359(2):378-89. PubMed ID: 16626735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alpha 1-proteinase inhibitor variant T345R. Influence of P14 residue on substrate and inhibitory pathways.
    Hood DB; Huntington JA; Gettins PG
    Biochemistry; 1994 Jul; 33(28):8538-47. PubMed ID: 8031789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of a serpin-protease complex shows inhibition by deformation.
    Huntington JA; Read RJ; Carrell RW
    Nature; 2000 Oct; 407(6806):923-6. PubMed ID: 11057674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inactivation of human thrombin in the presence of human alpha1-proteinase inhibitor.
    Matheson NR; Travis J
    Biochem J; 1976 Dec; 159(3):495-502. PubMed ID: 1087557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Partially folded bovine pancreatic trypsin inhibitor analogues attain fully native structures when co-crystallized with S195A rat trypsin.
    Getun IV; Brown CK; Tulla-Puche J; Ohlendorf D; Woodward C; Barany G
    J Mol Biol; 2008 Jan; 375(3):812-23. PubMed ID: 18054043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of fluorescence resonance energy transfer to study serpin-proteinase interactions.
    Gettins PG; Olson ST
    Methods; 2004 Feb; 32(2):110-9. PubMed ID: 14698623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of the complex of trypsin with a highly potent synthetic inhibitor at 0.97 A resolution.
    Sherawat M; Kaur P; Perbandt M; Betzel C; Slusarchyk WA; Bisacchi GS; Chang C; Jacobson BL; Einspahr HM; Singh TP
    Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):500-7. PubMed ID: 17372355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-barrier hydrogen bond hypothesis in the catalytic triad residue of serine proteases: correlation between structural rearrangement and chemical shifts in the acylation process.
    Ishida T
    Biochemistry; 2006 May; 45(17):5413-20. PubMed ID: 16634622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of oxidative mixed-disulfide formation in elastase-serine proteinase inhibitor (serpin) complex.
    Tyagi SC
    Biochem Cell Biol; 1996; 74(3):391-401. PubMed ID: 8883845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrophobic interactions control zymogen activation in the trypsin family of serine proteases.
    Hedstrom L; Lin TY; Fast W
    Biochemistry; 1996 Apr; 35(14):4515-23. PubMed ID: 8605201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three dimensional structures of S189D chymotrypsin and D189S trypsin mutants: the effect of polarity at site 189 on a protease-specific stabilization of the substrate-binding site.
    Szabó E; Venekei I; Böcskei Z; Náray-Szabó G; Gráf L
    J Mol Biol; 2003 Aug; 331(5):1121-30. PubMed ID: 12927546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of the P5 residue on alpha1-proteinase inhibitor mechanism.
    Chaillan-Huntington CE; Patston PA
    J Biol Chem; 1998 Feb; 273(8):4569-73. PubMed ID: 9468513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective removal of individual disulfide bonds within a potato type II serine proteinase inhibitor from Nicotiana alata reveals differential stabilization of the reactive-site loop.
    Schirra HJ; Guarino RF; Anderson MA; Craik DJ
    J Mol Biol; 2010 Jan; 395(3):609-26. PubMed ID: 19925809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.