These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
770 related articles for article (PubMed ID: 9155024)
21. A GCN-like response in Candida albicans. Pereira SA; Livi GP Cell Biol Int; 1995 Jan; 19(1):65-9. PubMed ID: 7613513 [TBL] [Abstract][Full Text] [Related]
22. The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1. Lane S; Zhou S; Pan T; Dai Q; Liu H Mol Cell Biol; 2001 Oct; 21(19):6418-28. PubMed ID: 11533231 [TBL] [Abstract][Full Text] [Related]
23. Roles of Candida albicans Sfl1 in hyphal development. Li Y; Su C; Mao X; Cao F; Chen J Eukaryot Cell; 2007 Nov; 6(11):2112-21. PubMed ID: 17715361 [TBL] [Abstract][Full Text] [Related]
24. The 5' Untranslated Region of the Desai PR; Lengeler K; Kapitan M; Janßen SM; Alepuz P; Jacobsen ID; Ernst JF mSphere; 2018 Jul; 3(4):. PubMed ID: 29976646 [TBL] [Abstract][Full Text] [Related]
25. Candida albicans Zcf37, a zinc finger protein, is required for stabilization of the white state. Wang H; Song W; Huang G; Zhou Z; Ding Y; Chen J FEBS Lett; 2011 Mar; 585(5):797-802. PubMed ID: 21315072 [TBL] [Abstract][Full Text] [Related]
26. Regulation of Ustilago maydis dimorphism, sporulation, and pathogenic development by a transcription factor with a highly conserved APSES domain. García-Pedrajas MD; Baeza-Montañez L; Gold SE Mol Plant Microbe Interact; 2010 Feb; 23(2):211-22. PubMed ID: 20064064 [TBL] [Abstract][Full Text] [Related]
27. Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans. Leuker CE; Sonneborn A; Delbrück S; Ernst JF Gene; 1997 Jun; 192(2):235-40. PubMed ID: 9224895 [TBL] [Abstract][Full Text] [Related]
28. A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Bockmühl DP; Ernst JF Genetics; 2001 Apr; 157(4):1523-30. PubMed ID: 11290709 [TBL] [Abstract][Full Text] [Related]
29. EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Sohn K; Urban C; Brunner H; Rupp S Mol Microbiol; 2003 Jan; 47(1):89-102. PubMed ID: 12492856 [TBL] [Abstract][Full Text] [Related]
30. Deletion of EFG1 promotes Candida albicans opaque formation responding to pH via Rim101. Nie X; Liu X; Wang H; Chen J Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):735-44. PubMed ID: 20870932 [TBL] [Abstract][Full Text] [Related]
31. Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes. Pierce JV; Dignard D; Whiteway M; Kumamoto CA Eukaryot Cell; 2013 Jan; 12(1):37-49. PubMed ID: 23125349 [TBL] [Abstract][Full Text] [Related]
32. APSES proteins regulate morphogenesis and metabolism in Candida albicans. Doedt T; Krishnamurthy S; Bockmühl DP; Tebarth B; Stempel C; Russell CL; Brown AJ; Ernst JF Mol Biol Cell; 2004 Jul; 15(7):3167-80. PubMed ID: 15218092 [TBL] [Abstract][Full Text] [Related]
33. Identification and characterization of Cor33p, a novel protein implicated in tolerance towards oxidative stress in Candida albicans. Sohn K; Roehm M; Urban C; Saunders N; Rothenstein D; Lottspeich F; Schröppel K; Brunner H; Rupp S Eukaryot Cell; 2005 Dec; 4(12):2160-9. PubMed ID: 16339733 [TBL] [Abstract][Full Text] [Related]
34. The two-component response regulator Skn7 belongs to a network of transcription factors regulating morphogenesis in Candida albicans and independently limits morphogenesis-induced ROS accumulation. Basso V; Znaidi S; Lagage V; Cabral V; Schoenherr F; LeibundGut-Landmann S; d'Enfert C; Bachellier-Bassi S Mol Microbiol; 2017 Oct; 106(1):157-182. PubMed ID: 28752552 [TBL] [Abstract][Full Text] [Related]
35. Ribosomal protein genes in the yeast Candida albicans may be activated by a heterodimeric transcription factor related to Ino2 and Ino4 from S. cerevisiae. Hoppen J; Dietz M; Warsow G; Rohde R; Schüller HJ Mol Genet Genomics; 2007 Sep; 278(3):317-30. PubMed ID: 17588177 [TBL] [Abstract][Full Text] [Related]
36. Cross-pathway and pathway-specific control of amino acid biosynthesis in Magnaporthe grisea. Shen WC; Ebbole DJ Fungal Genet Biol; 1997 Feb; 21(1):40-9. PubMed ID: 9126616 [TBL] [Abstract][Full Text] [Related]
37. Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes. Wang A; Raniga PP; Lane S; Lu Y; Liu H Mol Cell Biol; 2009 Aug; 29(16):4406-16. PubMed ID: 19528234 [TBL] [Abstract][Full Text] [Related]
38. A basic helix-loop-helix protein with similarity to the fungal morphological regulators, Phd1p, Efg1p and StuA, controls conidiation but not dimorphic growth in Penicillium marneffei. Borneman AR; Hynes MJ; Andrianopoulos A Mol Microbiol; 2002 May; 44(3):621-31. PubMed ID: 11994146 [TBL] [Abstract][Full Text] [Related]
39. A screen in Saccharomyces cerevisiae identified CaMCM1, an essential gene in Candida albicans crucial for morphogenesis. Rottmann M; Dieter S; Brunner H; Rupp S Mol Microbiol; 2003 Feb; 47(4):943-59. PubMed ID: 12581351 [TBL] [Abstract][Full Text] [Related]
40. The amdA regulatory gene of Aspergillus nidulans: characterization of gain-of-function mutations and identification of binding sites for the gene product. Andrianopoulos A; Brons J; Davis MA; Hynes MJ Fungal Genet Biol; 1997 Feb; 21(1):50-63. PubMed ID: 9126617 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]