These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 9155031)
1. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. Hilfiker A; Hilfiker-Kleiner D; Pannuti A; Lucchesi JC EMBO J; 1997 Apr; 16(8):2054-60. PubMed ID: 9155031 [TBL] [Abstract][Full Text] [Related]
2. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Gu W; Szauter P; Lucchesi JC Dev Genet; 1998; 22(1):56-64. PubMed ID: 9499580 [TBL] [Abstract][Full Text] [Related]
3. Sex-biased transcription enhancement by a 5' tethered Gal4-MOF histone acetyltransferase fusion protein in Drosophila. Schiemann AH; Li F; Weake VM; Belikoff EJ; Klemmer KC; Moore SA; Scott MJ BMC Mol Biol; 2010 Nov; 11():80. PubMed ID: 21062452 [TBL] [Abstract][Full Text] [Related]
4. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Smith ER; Eisen A; Gu W; Sattah M; Pannuti A; Zhou J; Cook RG; Lucchesi JC; Allis CD Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3561-5. PubMed ID: 9520405 [TBL] [Abstract][Full Text] [Related]
5. Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. Zhou S; Yang Y; Scott MJ; Pannuti A; Fehr KC; Eisen A; Koonin EV; Fouts DL; Wrightsman R; Manning JE EMBO J; 1995 Jun; 14(12):2884-95. PubMed ID: 7796814 [TBL] [Abstract][Full Text] [Related]
6. MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex. Buscaino A; Köcher T; Kind JH; Holz H; Taipale M; Wagner K; Wilm M; Akhtar A Mol Cell; 2003 May; 11(5):1265-77. PubMed ID: 12769850 [TBL] [Abstract][Full Text] [Related]
7. Esa1p is an essential histone acetyltransferase required for cell cycle progression. Clarke AS; Lowell JE; Jacobson SJ; Pillus L Mol Cell Biol; 1999 Apr; 19(4):2515-26. PubMed ID: 10082517 [TBL] [Abstract][Full Text] [Related]
8. Evolution of dosage compensation in Diptera: the gene maleless implements dosage compensation in Drosophila (Brachycera suborder) but its homolog in Sciara (Nematocera suborder) appears to play no role in dosage compensation. Ruiz MF; Esteban MR; Doñoro C; Goday C; Sánchez L Genetics; 2000 Dec; 156(4):1853-65. PubMed ID: 11102379 [TBL] [Abstract][Full Text] [Related]
9. The drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Smith ER; Pannuti A; Gu W; Steurnagel A; Cook RG; Allis CD; Lucchesi JC Mol Cell Biol; 2000 Jan; 20(1):312-8. PubMed ID: 10594033 [TBL] [Abstract][Full Text] [Related]
10. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Akhtar A; Becker PB Mol Cell; 2000 Feb; 5(2):367-75. PubMed ID: 10882077 [TBL] [Abstract][Full Text] [Related]
11. The non-dosage compensated Lsp1alpha gene of Drosophila melanogaster escapes acetylation by MOF in larval fat body nuclei, but is flanked by two dosage compensated genes. Weake VM; Scott MJ BMC Mol Biol; 2007 May; 8():35. PubMed ID: 17511883 [TBL] [Abstract][Full Text] [Related]
12. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Larschan E; Bishop EP; Kharchenko PV; Core LJ; Lis JT; Park PJ; Kuroda MI Nature; 2011 Mar; 471(7336):115-8. PubMed ID: 21368835 [TBL] [Abstract][Full Text] [Related]
13. Sex-specific phenotypes of histone H4 point mutants establish dosage compensation as the critical function of H4K16 acetylation in Copur Ö; Gorchakov A; Finkl K; Kuroda MI; Müller J Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13336-13341. PubMed ID: 30530664 [TBL] [Abstract][Full Text] [Related]
14. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. Meller VH; Rattner BP EMBO J; 2002 Mar; 21(5):1084-91. PubMed ID: 11867536 [TBL] [Abstract][Full Text] [Related]
15. Tracing the origin of the compensasome: evolutionary history of DEAH helicase and MYST acetyltransferase gene families. Sanjuán R; Marín I Mol Biol Evol; 2001 Mar; 18(3):330-43. PubMed ID: 11230534 [TBL] [Abstract][Full Text] [Related]
16. The yeast NuA4 and Drosophila MSL complexes contain homologous subunits important for transcription regulation. Eisen A; Utley RT; Nourani A; Allard S; Schmidt P; Lane WS; Lucchesi JC; Cote J J Biol Chem; 2001 Feb; 276(5):3484-91. PubMed ID: 11036083 [TBL] [Abstract][Full Text] [Related]
17. A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF. Neal KC; Pannuti A; Smith ER; Lucchesi JC Biochim Biophys Acta; 2000 Jan; 1490(1-2):170-4. PubMed ID: 10786633 [TBL] [Abstract][Full Text] [Related]
18. A functional dosage compensation complex required for male killing in Drosophila. Veneti Z; Bentley JK; Koana T; Braig HR; Hurst GD Science; 2005 Mar; 307(5714):1461-3. PubMed ID: 15746426 [TBL] [Abstract][Full Text] [Related]
19. MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila. Scott MJ; Pan LL; Cleland SB; Knox AL; Heinrich J EMBO J; 2000 Jan; 19(1):144-55. PubMed ID: 10619853 [TBL] [Abstract][Full Text] [Related]
20. Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. Morales V; Straub T; Neumann MF; Mengus G; Akhtar A; Becker PB EMBO J; 2004 Jun; 23(11):2258-68. PubMed ID: 15141166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]