BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 9155031)

  • 1. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila.
    Hilfiker A; Hilfiker-Kleiner D; Pannuti A; Lucchesi JC
    EMBO J; 1997 Apr; 16(8):2054-60. PubMed ID: 9155031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster.
    Gu W; Szauter P; Lucchesi JC
    Dev Genet; 1998; 22(1):56-64. PubMed ID: 9499580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sex-biased transcription enhancement by a 5' tethered Gal4-MOF histone acetyltransferase fusion protein in Drosophila.
    Schiemann AH; Li F; Weake VM; Belikoff EJ; Klemmer KC; Moore SA; Scott MJ
    BMC Mol Biol; 2010 Nov; 11():80. PubMed ID: 21062452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ESA1 is a histone acetyltransferase that is essential for growth in yeast.
    Smith ER; Eisen A; Gu W; Sattah M; Pannuti A; Zhou J; Cook RG; Lucchesi JC; Allis CD
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3561-5. PubMed ID: 9520405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster.
    Zhou S; Yang Y; Scott MJ; Pannuti A; Fehr KC; Eisen A; Koonin EV; Fouts DL; Wrightsman R; Manning JE
    EMBO J; 1995 Jun; 14(12):2884-95. PubMed ID: 7796814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex.
    Buscaino A; Köcher T; Kind JH; Holz H; Taipale M; Wagner K; Wilm M; Akhtar A
    Mol Cell; 2003 May; 11(5):1265-77. PubMed ID: 12769850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Esa1p is an essential histone acetyltransferase required for cell cycle progression.
    Clarke AS; Lowell JE; Jacobson SJ; Pillus L
    Mol Cell Biol; 1999 Apr; 19(4):2515-26. PubMed ID: 10082517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of dosage compensation in Diptera: the gene maleless implements dosage compensation in Drosophila (Brachycera suborder) but its homolog in Sciara (Nematocera suborder) appears to play no role in dosage compensation.
    Ruiz MF; Esteban MR; Doñoro C; Goday C; Sánchez L
    Genetics; 2000 Dec; 156(4):1853-65. PubMed ID: 11102379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation.
    Smith ER; Pannuti A; Gu W; Steurnagel A; Cook RG; Allis CD; Lucchesi JC
    Mol Cell Biol; 2000 Jan; 20(1):312-8. PubMed ID: 10594033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila.
    Akhtar A; Becker PB
    Mol Cell; 2000 Feb; 5(2):367-75. PubMed ID: 10882077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The non-dosage compensated Lsp1alpha gene of Drosophila melanogaster escapes acetylation by MOF in larval fat body nuclei, but is flanked by two dosage compensated genes.
    Weake VM; Scott MJ
    BMC Mol Biol; 2007 May; 8():35. PubMed ID: 17511883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila.
    Larschan E; Bishop EP; Kharchenko PV; Core LJ; Lis JT; Park PJ; Kuroda MI
    Nature; 2011 Mar; 471(7336):115-8. PubMed ID: 21368835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex-specific phenotypes of histone H4 point mutants establish dosage compensation as the critical function of H4K16 acetylation in
    Copur Ö; Gorchakov A; Finkl K; Kuroda MI; Müller J
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13336-13341. PubMed ID: 30530664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex.
    Meller VH; Rattner BP
    EMBO J; 2002 Mar; 21(5):1084-91. PubMed ID: 11867536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracing the origin of the compensasome: evolutionary history of DEAH helicase and MYST acetyltransferase gene families.
    Sanjuán R; Marín I
    Mol Biol Evol; 2001 Mar; 18(3):330-43. PubMed ID: 11230534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The yeast NuA4 and Drosophila MSL complexes contain homologous subunits important for transcription regulation.
    Eisen A; Utley RT; Nourani A; Allard S; Schmidt P; Lane WS; Lucchesi JC; Cote J
    J Biol Chem; 2001 Feb; 276(5):3484-91. PubMed ID: 11036083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF.
    Neal KC; Pannuti A; Smith ER; Lucchesi JC
    Biochim Biophys Acta; 2000 Jan; 1490(1-2):170-4. PubMed ID: 10786633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional dosage compensation complex required for male killing in Drosophila.
    Veneti Z; Bentley JK; Koana T; Braig HR; Hurst GD
    Science; 2005 Mar; 307(5714):1461-3. PubMed ID: 15746426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila.
    Scott MJ; Pan LL; Cleland SB; Knox AL; Heinrich J
    EMBO J; 2000 Jan; 19(1):144-55. PubMed ID: 10619853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional integration of the histone acetyltransferase MOF into the dosage compensation complex.
    Morales V; Straub T; Neumann MF; Mengus G; Akhtar A; Becker PB
    EMBO J; 2004 Jun; 23(11):2258-68. PubMed ID: 15141166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.