These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46 related articles for article (PubMed ID: 915545)
1. Distribution of 51Cr-labeled lymph node cells in Pseudomonas aeruginosa-infected mice. Campa M; Ferrannini E; Colizzi V; Garzelli G J Nucl Med Allied Sci; 1977; 21(1-2):37-42. PubMed ID: 915545 [No Abstract] [Full Text] [Related]
2. Evidence for suppressor cell activity associated with depression of contact sensitivity in Pseudomonas aeruginosa infected mice. Campa M; Garzelli C; Ferrannini E; Falcone G Clin Exp Immunol; 1976 Nov; 26(2):355-62. PubMed ID: 991463 [TBL] [Abstract][Full Text] [Related]
3. Contact sensitivity in the mouse. IX. The role of immunological and non-immunological inflammation in the movement of lymphocytes to immunized lymph nodes. Asherson GL; Barnes RM Immunology; 1973 May; 24(5):885-94. PubMed ID: 4715261 [TBL] [Abstract][Full Text] [Related]
4. Tolerance and contact sensitivity to DNFB in mice. I. In vivo detection by ear swelling and correlation with in vitro cell stimulation. Phanuphak P; Moorhead JW; Claman HN J Immunol; 1974 Jan; 112(1):115-23. PubMed ID: 4812172 [No Abstract] [Full Text] [Related]
5. Tolerance and contact sensitivity to DNFB in mice. IV. Desensitization as a manifestation of increased proliferation of sensitized cells. Phanuphak P; Moorhead JW; Claman HN J Immunol; 1975 Apr; 114(4):1147-52. PubMed ID: 1117136 [TBL] [Abstract][Full Text] [Related]
6. Inflammatory lymphoid cells. Cells in immunized lymph nodes that move to sites of inflammation. Asherson GL; Allwood GG Immunology; 1972 Mar; 22(3):493-502. PubMed ID: 4402113 [TBL] [Abstract][Full Text] [Related]
7. Role of specific delayed-type hypersensitivity in Pseudomonas aeruginosa-infected mice. Colizzi V; Garzelli C; Campa M; Toca L; Falcone G Immunology; 1982 Oct; 47(2):337-44. PubMed ID: 6811422 [TBL] [Abstract][Full Text] [Related]
8. Effects of lymphoid depletion on the distribution of 51Cr-labeled lymph node cells in mice. Taub RN; Lance EM Transplantation; 1971 Jun; 11(6):536-42. PubMed ID: 5579352 [No Abstract] [Full Text] [Related]
9. Electrokinetic status of the subpopulations of lymph node cells in contact-sensitized CBA mice. Bharambe SD; Sainis KB; Phondke GP; Sundaram K Folia Biol (Praha); 1986; 32(1):47-64. PubMed ID: 3486136 [TBL] [Abstract][Full Text] [Related]
10. Soluble factors in tolerance and contact sensitivity to DNFB in mice. V. Genetic requirements for stimulating suppressor factor production in vitro. Moorhead JW J Immunol; 1982 Nov; 129(5):1837-42. PubMed ID: 7119435 [No Abstract] [Full Text] [Related]
11. Interference of Pseudomonas aeruginosa with immunospecific host defenses. Petit JC; Daguet GL Biomed Pharmacother; 1983; 37(9-10):422-8. PubMed ID: 6232960 [TBL] [Abstract][Full Text] [Related]
12. Increased severity of Pseudomonas aeruginosa corneal infection in strains of mice designated as Th1 versus Th2 responsive. Hazlett LD; McClellan S; Kwon B; Barrett R Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):805-10. PubMed ID: 10711697 [TBL] [Abstract][Full Text] [Related]
13. The induction of tolerance to DNFB contact sensitivity by using hapten-modified lymphoid cells. III. Effects of hapten concentration on the ability of MLS-disparate cells to induce rapid unresponsiveness. Conlon PJ; Miller SD; Claman HN J Immunol; 1980 Aug; 125(2):807-13. PubMed ID: 6156215 [TBL] [Abstract][Full Text] [Related]
14. Enhanced splenic bacterial clearance and neutrophilia in anti-NK1.1-treated mice infected with Pseudomonas aeruginosa. Newton DW; Runnels HA; Kearns RJ Nat Immun; 1992; 11(6):335-44. PubMed ID: 1477496 [TBL] [Abstract][Full Text] [Related]
15. Tolerance and contact sensitivity to DNFB in mice. VI. Inhibition of afferent sensitivity by suppressor T cells in adoptive tolerance. Moorhead JW J Immunol; 1976 Sep; 117(3):802-6. PubMed ID: 1085311 [TBL] [Abstract][Full Text] [Related]
16. Enhanced resistance to Pseudomonas aeruginosa infection in mice pretreated with OK-432. Saito H; Watanabe T; Tomioka H; Sato K; Kitagawa T Hiroshima J Med Sci; 1983 Jun; 32(2):235-9. PubMed ID: 6618904 [No Abstract] [Full Text] [Related]
17. Suppressor T cell circuits in contact sensitivity. I. Two mechanistically distinct waves of suppressor T cells occur in mice tolerized with syngeneic DNP-modified lymphoid cells. Miller SD; Butler LD; Claman HN J Immunol; 1982 Aug; 129(2):461-8. PubMed ID: 6211486 [TBL] [Abstract][Full Text] [Related]
18. Proceedings: Control mechanisms in cell-mediated immunity. The separate control of net DNA synthesis and of contact sensitivity skin reactions and the role of thymus-derived cells. Asherson GL; Zembala M; Wood PJ Monogr Allergy; 1974; 8(0):154-67. PubMed ID: 4546001 [No Abstract] [Full Text] [Related]
19. B cells are not required for T cell priming in low zone tolerance to contact allergens and contact hypersensitivity. Seidel-Guyenot W; Alt R; Perschon S; Knop J; Steinbrink K Eur J Immunol; 2004 Nov; 34(11):3082-90. PubMed ID: 15376190 [TBL] [Abstract][Full Text] [Related]
20. Effect of topical cis-urocanic acid on local lymph node activation during contact sensitization in mouse, rat and guinea-pig. Lauerma AI; Homey B; Vohr HW; Lee CH; Bloom E; Maibach HI Br J Dermatol; 1996 May; 134(5):904-9. PubMed ID: 8736333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]