BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9155874)

  • 21. Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus.
    Kash JC; Basler CF; García-Sastre A; Carter V; Billharz R; Swayne DE; Przygodzki RM; Taubenberger JK; Katze MG; Tumpey TM
    J Virol; 2004 Sep; 78(17):9499-511. PubMed ID: 15308742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. T160A mutation-induced deglycosylation at site 158 in hemagglutinin is a critical determinant of the dual receptor binding properties of clade 2.3.4.4 H5NX subtype avian influenza viruses.
    Gao R; Gu M; Liu K; Li Q; Li J; Shi L; Li X; Wang X; Hu J; Liu X; Hu S; Chen S; Peng D; Jiao X; Liu X
    Vet Microbiol; 2018 Apr; 217():158-166. PubMed ID: 29615249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in Mice.
    Teng Q; Xu D; Shen W; Liu Q; Rong G; Li X; Yan L; Yang J; Chen H; Yu H; Ma W; Li Z
    J Virol; 2016 Nov; 90(21):9806-9825. PubMed ID: 27558420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The S190R mutation in the hemagglutinin protein of pandemic H1N1 2009 influenza virus increased its pathogenicity in mice.
    Chen Y; Bai T; Zhu W; Gao R; Deng Z; Shi Y; Zou S; Huang Y; Li X; Li F; Feng Z; Chen T; Yang J; Wang D; Gao L; Shu Y
    Sci China Life Sci; 2018 Jul; 61(7):836-843. PubMed ID: 29445999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Changes in its hemagglutinin during the adaptation of the influenza virus to mice and their role in the acquisition of virulent properties and resistance to serum inhibitors].
    Shilov AA; Sinitsyn BV
    Vopr Virusol; 1994; 39(4):153-7. PubMed ID: 7998391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutations in the hemagglutinin and matrix genes of a virulent influenza virus variant, A/FM/1/47-MA, control different stages in pathogenesis.
    Smeenk CA; Wright KE; Burns BF; Thaker AJ; Brown EG
    Virus Res; 1996 Oct; 44(2):79-95. PubMed ID: 8879138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two distinct serum mannose-binding lectins function as beta inhibitors of influenza virus: identification of bovine serum beta inhibitor as conglutinin.
    Hartley CA; Jackson DC; Anders EM
    J Virol; 1992 Jul; 66(7):4358-63. PubMed ID: 1602549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses.
    Wang X; Ilyushina NA; Lugovtsev VY; Bovin NV; Couzens LK; Gao J; Donnelly RP; Eichelberger MC; Wan H
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27807224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recombinant parainfluenza virus 5 (PIV5) expressing the influenza A virus hemagglutinin provides immunity in mice to influenza A virus challenge.
    Tompkins SM; Lin Y; Leser GP; Kramer KA; Haas DL; Howerth EW; Xu J; Kennett MJ; Durbin RK; Durbin JE; Tripp R; Lamb RA; He B
    Virology; 2007 May; 362(1):139-50. PubMed ID: 17254623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hemagglutinin-Neuraminidase Balance Influences the Virulence Phenotype of a Recombinant H5N3 Influenza A Virus Possessing a Polybasic HA0 Cleavage Site.
    Diederich S; Berhane Y; Embury-Hyatt C; Hisanaga T; Handel K; Cottam-Birt C; Ranadheera C; Kobasa D; Pasick J
    J Virol; 2015 Nov; 89(21):10724-34. PubMed ID: 26246579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus.
    Kobasa D; Takada A; Shinya K; Hatta M; Halfmann P; Theriault S; Suzuki H; Nishimura H; Mitamura K; Sugaya N; Usui T; Murata T; Maeda Y; Watanabe S; Suresh M; Suzuki T; Suzuki Y; Feldmann H; Kawaoka Y
    Nature; 2004 Oct; 431(7009):703-7. PubMed ID: 15470432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetically destined potentials for N-linked glycosylation of influenza virus hemagglutinin.
    Igarashi M; Ito K; Kida H; Takada A
    Virology; 2008 Jul; 376(2):323-9. PubMed ID: 18456302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glycosylation changes in the globular head of H3N2 influenza hemagglutinin modulate receptor binding without affecting virus virulence.
    Alymova IV; York IA; Air GM; Cipollo JF; Gulati S; Baranovich T; Kumar A; Zeng H; Gansebom S; McCullers JA
    Sci Rep; 2016 Oct; 6():36216. PubMed ID: 27796371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Y161F Hemagglutinin Substitution Increases Thermostability and Improves Yields of 2009 H1N1 Influenza A Virus in Cells.
    Wen F; Li L; Zhao N; Chiang MJ; Xie H; Cooley J; Webby R; Wang PG; Wan XF
    J Virol; 2018 Jan; 92(2):. PubMed ID: 29118117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Dual Motif in the Hemagglutinin of H5N1 Goose/Guangdong-Like Highly Pathogenic Avian Influenza Virus Strains Is Conserved from Their Early Evolution and Increases both Membrane Fusion pH and Virulence.
    Wessels U; Abdelwhab EM; Veits J; Hoffmann D; Mamerow S; Stech O; Hellert J; Beer M; Mettenleiter TC; Stech J
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mouse lung-adapted mutation of E190G in hemagglutinin from H5N1 influenza virus contributes to attenuation in mice.
    Han P; Hu Y; Sun W; Zhang S; Li Y; Wu X; Yang Y; Zhu Q; Jiang T; Li J; Qin C
    J Med Virol; 2015 Nov; 87(11):1816-22. PubMed ID: 26089289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics.
    Wagner R; Wolff T; Herwig A; Pleschka S; Klenk HD
    J Virol; 2000 Jul; 74(14):6316-23. PubMed ID: 10864641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutations during the Adaptation of H9N2 Avian Influenza Virus to the Respiratory Epithelium of Pigs Enhance Sialic Acid Binding Activity and Virulence in Mice.
    Yang W; Punyadarsaniya D; Lambertz RLO; Lee DCC; Liang CH; Höper D; Leist SR; Hernández-Cáceres A; Stech J; Beer M; Wu CY; Wong CH; Schughart K; Meng F; Herrler G
    J Virol; 2017 Apr; 91(8):. PubMed ID: 28148793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alterations in hemagglutinin receptor-binding specificity accompany the emergence of highly pathogenic avian influenza viruses.
    Heider A; Mochalova L; Harder T; Tuzikov A; Bovin N; Wolff T; Matrosovich M; Schweiger B
    J Virol; 2015 May; 89(10):5395-405. PubMed ID: 25741006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PB2 and HA mutations increase the virulence of highly pathogenic H5N5 clade 2.3.4.4 avian influenza virus in mice.
    Yu Z; Cheng K; Sun W; Zhang X; Xia X; Gao Y
    Arch Virol; 2018 Feb; 163(2):401-410. PubMed ID: 29090366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.