These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 91573)

  • 41. The thymus as primary site for antigen-specific T suppressor cells in neonatally induced tolerance to bovine serum albumin.
    Brüner K; Opitz HG; Kölsch E
    Immunobiology; 1982 Aug; 162(3):221-8. PubMed ID: 6215334
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Macrophage transmission of suppressor signal for suppression of delayed hypersensitivity and humoral response in JEV-infected mice.
    Mathur A; Rawat S; Chaturvedi UC; Misra VS
    Br J Exp Pathol; 1986 Apr; 67(2):171-9. PubMed ID: 3011056
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective induction of delayed hypersensitivity T-effector and T-suppressor lymphocytes in vitro by haptenized bone marrow-derived macrophages.
    Knop J; Malorny U; Macher E
    Cell Immunol; 1984 Oct; 88(2):411-20. PubMed ID: 6237731
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suppression in Xenopus laevis: thymus inducer, spleen effector cells.
    Ruben LN; Buenafe A; Oliver S; Malley A; Barr K; Lukas D
    Immunology; 1985 Jan; 54(1):65-70. PubMed ID: 3156089
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo role of macrophages in transmission of dengue virus-induced suppressor signal to T lymphocytes.
    Shukla MI; Chaturvedi UC
    Br J Exp Pathol; 1982 Oct; 63(5):522-30. PubMed ID: 6184065
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prostaglandin-mediated suppression of delayed-type hypersensitivity to infected erythrocytes during Babesia microti infection in mice.
    Ruebush MJ; Steel LK; Kennedy DA
    Cell Immunol; 1986 Apr; 98(2):300-10. PubMed ID: 2944617
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultraviolet-induced suppressor T cells and factor(s) in murine contact photosensitivity. I. Biological and immunochemical characterization of factor(s) extracted from suppressor T cells.
    Tokura Y; Miyachi Y; Takigawa M; Yamada M
    Cell Immunol; 1987 Dec; 110(2):305-20. PubMed ID: 2446779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immunoregulation of lysozyme-specific suppression. III. Epitope-specific amplification of immunosuppression induced by monoclonal suppressor-T-cell products.
    Adorini L; Colizzi V; Pini C; Appella E; Doria G
    Cell Immunol; 1986 Sep; 101(2):502-11. PubMed ID: 2428517
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Depression by Pseudomonas aeruginosa of two T-cell-mediated responses, anti-Listeria immunity and delayed-type hypersensitivity to sheep erythrocytes.
    Petit JC; Richard G; Albert B; Daguet GL
    Infect Immun; 1982 Mar; 35(3):900-8. PubMed ID: 6461605
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Induction of suppressor cells by a tumor-derived suppressor factor.
    Jessup JM; Le Grue SJ; Kahan BD; Pellis NR
    Cell Immunol; 1985 Jun; 93(1):9-25. PubMed ID: 3158410
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lactococcus strains treated with heat and hen-egg-white lysozyme induce abundant interleukin-12 production by J774.1 macrophages and murine spleen cells.
    Aoki R; Suzuki C; Kimoto H; Nomura M; Mizumachi K
    J Dairy Sci; 2011 Jul; 94(7):3262-70. PubMed ID: 21700010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Suppression of delayed-type hypersensitivity mediated by macrophage-like cells in mice with experimental liver injury.
    Tajima S; Nishimura N; Ito K
    Immunology; 1985 Jan; 54(1):57-64. PubMed ID: 2982732
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Difference in thymus dependency between effector and suppressor T cells for delayed footpad reaction to sheep erythrocytes in mice.
    Shimamoto Y; Kubo C; Taniguchi K; Nomoto K
    Cell Immunol; 1981 Jun; 61(1):190-9. PubMed ID: 6455200
    [No Abstract]   [Full Text] [Related]  

  • 54. Immunostimulatory activity of the polysaccharides from Hyriopsis cumingii.
    Qiao D; Luo J; Ke C; Sun Y; Ye H; Zeng X
    Int J Biol Macromol; 2010 Dec; 47(5):676-80. PubMed ID: 20804782
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lymphoid cells in delayed hypersensitivity. 3. The influence of x-irradiation on passive transfer and on in vitro production of soluble mediators.
    Salvin SB; Nishio J
    J Exp Med; 1972 Apr; 135(4):985-96. PubMed ID: 5018056
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antigen-specific augmentation of delayed-type hypersensitivity by a humoral factor in the culture supernatant of immune spleen cells.
    Yamada A; Himeno K; Kumazawa Y; Nomoto K
    Cell Immunol; 1984 Mar; 84(1):206-9. PubMed ID: 6199121
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition of contact sensitivity by macrophages.
    Ptak W; Zembala M; Asherson GL; Marcinkiewicz J
    Int Arch Allergy Appl Immunol; 1981; 65(2):121-8. PubMed ID: 6453097
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antigen-specific augmentation of delayed-type hypersensitivity by immune serum factor in mice: augmentation of anti-tumor cytostatic activity.
    Nakamura S; Himeno K; Yamada A; Mitani M; Nomoto K
    Cell Immunol; 1986 Dec; 103(2):311-25. PubMed ID: 3542236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nonspecific regulatory mechanism of contact sensitivity: nonspecific suppressor factor (NSF)-treated intermediate cells produce a second nonspecific suppressor factor (NSFint).
    Nakano Y
    Cell Immunol; 1992 Sep; 143(2):357-67. PubMed ID: 1387348
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Specificity of suppressor cells of the delayed hypersensitivity type for Staphylococcus studied by immunoadsorption].
    Bekhalo VA; Fontalin LN; Ratgauz GL
    Zh Mikrobiol Epidemiol Immunobiol; 1988 Oct; (10):49-51. PubMed ID: 2464260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.