These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 915774)

  • 1. Short circuit current and total conductance measurements on rat ileum.
    Emílo MG; de Jesus CH
    J Physiol; 1977 Aug; 270(1):209-22. PubMed ID: 915774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-circuit current and total conductance measurements on rabbit ileum.
    Henriques de Jesus C
    J Physiol; 1977 Jun; 268(2):353-69. PubMed ID: 874915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole cell recording of sugar-induced currents in LLC-PK1 cells.
    Smith-Maxwell C; Bennett E; Randles J; Kimmich GA
    Am J Physiol; 1990 Feb; 258(2 Pt 1):C234-42. PubMed ID: 2305866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Procyanidin from black beans (Phaseolus vulgaris) inhibits nutrient and electrolyte absorption in isolated rat ileum and induces secretion of chloride ion.
    Silverstein LJ; Swanson BG; Moffett D
    J Nutr; 1996 Jun; 126(6):1688-95. PubMed ID: 8648444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of serosally added sugars on the transepithelial electrical properties of the perfused goldfish intestine.
    Albus H; Groot JA; Siegenbeek Van Heukelom J
    Pflugers Arch; 1976 Sep; 365(1):1-8. PubMed ID: 988541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugars and sugar derivatives which inhibit the short-circuit current of the everted small intestine of the rat.
    Muflih IW; Widdas WF
    J Physiol; 1976 Dec; 263(2):101-14. PubMed ID: 1018228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of glucagon-like peptide-1 (GLP-1) by carbohydrates in the perfused rat ileum.
    Ritzel U; Fromme A; Ottleben M; Leonhardt U; Ramadori G
    Acta Diabetol; 1997 Mar; 34(1):18-21. PubMed ID: 9134052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of volume and Na+ transport in frog skin epithelium.
    Tang CS; Peterson-Yantorno K; Civan MM
    Biol Cell; 1989; 66(1-2):183-90. PubMed ID: 2804459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemotactic peptide effects on intestinal electrolyte transport.
    Barrett TA; Musch MW; Chang EB
    Am J Physiol; 1990 Dec; 259(6 Pt 1):G947-54. PubMed ID: 1701975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transepithelial glucose transport in cell culture.
    Misfeldt DS; Sanders MJ
    Am J Physiol; 1981 Mar; 240(3):C92-5. PubMed ID: 7212056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sulfidopeptide leukotrienes D4 and E4 on ileal ion transport in vitro in the rat and rabbit.
    Smith PL; Montzka DP; McCafferty GP; Wasserman MA; Fondacaro JD
    Am J Physiol; 1988 Aug; 255(2 Pt 1):G175-83. PubMed ID: 2841866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical properties and active solute transport in rat small intestine. II. Conductive properties of transepithelial routes.
    Okada Y; Irimajiri A; Inouye A
    J Membr Biol; 1977 Mar; 31(3):221-32. PubMed ID: 845930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circuit analysis of membrane potentials changes due to electrogenic sodium-dependent sugar transport in goldfish intestinal epithelium.
    Albus H; Bakker R; Siegenbeek van Heukelom JS
    Pflugers Arch; 1983 Jun; 398(1):1-9. PubMed ID: 6889099
    [No Abstract]   [Full Text] [Related]  

  • 14. ION TRANSPORT IN ISOLATED RABBIT ILEUM. II. THE INTERACTION BETWEEN ACTIVE SODIUM AND ACTIVE SUGAR TRANSPORT.
    SCHULTZ SG; ZALUSKY R
    J Gen Physiol; 1964 Jul; 47(6):1043-59. PubMed ID: 14192544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on transmural potentials in vitro in relation to intestinal absorption. VI. The effect of sugars on electrical potential profiles in jejunum and ileum.
    Lyon I; Sheerin HE
    Biochim Biophys Acta; 1971 Oct; 249(1):1-14. PubMed ID: 5141125
    [No Abstract]   [Full Text] [Related]  

  • 16. Glucose transport in intestinal epithelia of winter flounder.
    Thompson KA; Kleinzeller A
    Am J Physiol; 1985 May; 248(5 Pt 2):R573-7. PubMed ID: 3993816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of 2-deoxy-D-glucose and glucose: effects on the short-circuit current of frog skin.
    Owen A; Caplan SR; Essig A
    Biochim Biophys Acta; 1975 May; 389(2):407-9. PubMed ID: 1079735
    [No Abstract]   [Full Text] [Related]  

  • 18. Conformational dynamics of hSGLT1 during Na+/glucose cotransport.
    Loo DD; Hirayama BA; Karakossian MH; Meinild AK; Wright EM
    J Gen Physiol; 2006 Dec; 128(6):701-20. PubMed ID: 17130520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysine transport across rat jejunum: distribution between the transcellular and the paracellular routes.
    Munck BG; Rasmussen SN
    J Physiol; 1979 Jun; 291():291-303. PubMed ID: 480216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium-dependent sugar and amino acid transport in isolated goldfish intestinal epithelium: electrophysiological evidence against direct interactions at the carrier level.
    Albus H; Lippens F; Siegenbeek van Heukelom JS
    Pflugers Arch; 1983 Jun; 398(1):10-7. PubMed ID: 6889100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.