These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 9157779)

  • 41. Ground reaction forces, bone characteristics, and tibial stress fracture in male runners.
    Crossley K; Bennell KL; Wrigley T; Oakes BW
    Med Sci Sports Exerc; 1999 Aug; 31(8):1088-93. PubMed ID: 10449008
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of bone strength at differentially-loaded skeletal regions in adolescent middle-distance runners.
    Greene DA; Naughton GA; Briody JN; Kemp A; Woodhead H
    J Sci Med Sport; 2006 Jun; 9(3):221-30. PubMed ID: 16697702
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Femoral bone density in young male adults with stress fractures.
    Pouilles JM; Bernard J; Tremollières F; Louvet JP; Ribot C
    Bone; 1989; 10(2):105-8. PubMed ID: 2765307
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Geometric variables from DXA of the radius predict forearm fracture load in vitro.
    Myers ER; Hecker AT; Rooks DS; Hipp JA; Hayes WC
    Calcif Tissue Int; 1993 Mar; 52(3):199-204. PubMed ID: 8481832
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shape and function of the diaphysis of the human tibia.
    Cristofolini L; Angeli E; Juszczyk JM; Juszczyk MM
    J Biomech; 2013 Jul; 46(11):1882-92. PubMed ID: 23726289
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comparative study between corresponding structural geometric variables using 2 commonly implemented hip structural analysis algorithms applied to dual-energy X-ray absorptiometry images.
    Khoo BC; Wilson SG; Worth GK; Perks U; Qweitin E; Spector TD; Price RI
    J Clin Densitom; 2009; 12(4):461-7. PubMed ID: 19880052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pixel-Based DXA-Derived Structural Properties Strongly Correlate with pQCT Measures at the One-Third Distal Femur Site.
    Baker AM; Wagner DW; Kiratli BJ; Beaupre GS
    Ann Biomed Eng; 2017 May; 45(5):1247-1254. PubMed ID: 28105580
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changing femoral geometry in growing girls: a cross-sectional DEXA study.
    Goulding A; Gold E; Cannan R; Williams S; Lewis-Barned NJ
    Bone; 1996 Dec; 19(6):645-9. PubMed ID: 8968032
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characteristics of long bone DXA reference data in Hong Kong Chinese.
    Leung KS; Lee KM; Cheung WH; Ng ES; Qin L
    J Clin Densitom; 2004; 7(2):192-200. PubMed ID: 15181263
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improved method for analysis of whole bone torsion tests.
    Levenston ME; Beaupré GS; van der Meulen MC
    J Bone Miner Res; 1994 Sep; 9(9):1459-65. PubMed ID: 7817831
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The area moment of inertia of the tibia: a risk factor for stress fractures.
    Milgrom C; Giladi M; Simkin A; Rand N; Kedem R; Kashtan H; Stein M; Gomori M
    J Biomech; 1989; 22(11-12):1243-8. PubMed ID: 2625424
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy X-ray absorptiometry.
    Woodhead HJ; Kemp AF; Blimkie CJR ; Briody JN; Duncan CS; Thompson M; Lam A; Howman-Giles R; Cowell CT
    J Bone Miner Res; 2001 Dec; 16(12):2251-9. PubMed ID: 11760839
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluating accuracy of structural geometry by DXA methods with an anthropometric proximal femur phantom.
    Khoo BC; Beck TJ; Brown K; Price RI
    Australas Phys Eng Sci Med; 2013 Sep; 36(3):279-87. PubMed ID: 23836197
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging.
    Högler W; Blimkie CJ; Cowell CT; Kemp AF; Briody J; Wiebe P; Farpour-Lambert N; Duncan CS; Woodhead HJ
    Bone; 2003 Nov; 33(5):771-8. PubMed ID: 14623052
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DXA-derived section modulus and bone mineral content predict long-bone torsional strength.
    Sarin VK; Loboa Polefka EG; Beaupré GS; Kiratli BJ; Carter DR; van der Meulen MC
    Acta Orthop Scand; 1999 Feb; 70(1):71-6. PubMed ID: 10191753
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Torsional strength estimates of femoral diaphyses with endosteal lytic lesions: dual-energy X-ray absorptiometry study.
    Robertson DD; Beck TJ; Chan BW; Scott WW; Sharma GB; Maloney WJ
    J Orthop Res; 2007 Oct; 25(10):1343-50. PubMed ID: 17549708
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increased density and periosteal expansion of the tibia in young adult men following short-term arduous training.
    Izard RM; Fraser WD; Negus C; Sale C; Greeves JP
    Bone; 2016 Jul; 88():13-19. PubMed ID: 27046087
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bone-muscle strength indices for the human lower leg.
    Rittweger J; Beller G; Ehrig J; Jung C; Koch U; Ramolla J; Schmidt F; Newitt D; Majumdar S; Schiessl H; Felsenberg D
    Bone; 2000 Aug; 27(2):319-26. PubMed ID: 10913929
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual energy X-ray absorptiometry is also an accurate and precise method to measure the dimensions of human long bones.
    Sievänen H; Kannus P; Oja P; Vuori I
    Calcif Tissue Int; 1994 Feb; 54(2):101-5. PubMed ID: 8012864
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A cortical-bone structural geometry phantom: dental plaster as a convenient and radiologically similar fabrication material.
    Khoo BC; Price RI; Beck TJ; Turk B; Brown S; Qiao QH; Singer KP
    Australas Phys Eng Sci Med; 2007 Sep; 30(3):200-10. PubMed ID: 18044304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.