BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 9158221)

  • 21. A moderately high fat diet promotes salt-sensitive hypertension in obese zucker rats by impairing nitric oxide production.
    Morrison RG; Mills C; Moran AL; Walton CE; Sadek MH; Mangiarua EI; Wehner PS; McCumbee WD
    Clin Exp Hypertens; 2007 Aug; 29(6):369-81. PubMed ID: 17729054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of nitric oxide in regulation of long-term pressure-natriuresis relationship in Dahl rats.
    Hu L; Manning RD
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2375-83. PubMed ID: 7611490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blood pressure, magnesium and other mineral balance in two rat models of salt-sensitive, induced hypertension: effects of a non-peptide angiotensin II receptor type 1 antagonist.
    Rondón LJ; Marcano E; Rodríguez F; del Castillo JR
    Magnes Res; 2014; 27(3):113-30. PubMed ID: 25560239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of abnormal nitric oxide systems in salt-sensitive hypertension.
    Manning RD; Hu L; Tan DY; Meng S
    Am J Hypertens; 2001 Jun; 14(6 Pt 2):68S-73S. PubMed ID: 11411768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. L-arginine or tempol supplementation improves renal and cardiovascular function in rats with reduced renal mass and chronic high salt intake.
    Carlström M; Brown RD; Yang T; Hezel M; Larsson E; Scheffer PG; Teerlink T; Lundberg JO; Persson AE
    Acta Physiol (Oxf); 2013 Apr; 207(4):732-41. PubMed ID: 23387940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aminoguanidine attenuates hypertension, whereas 7-nitroindazole exacerbates kidney damage in spontaneously hypertensive rats: the role of nitric oxide.
    Huang CF; Hsu CN; Chien SJ; Lin YJ; Huang LT; Tain YL
    Eur J Pharmacol; 2013 Jan; 699(1-3):233-40. PubMed ID: 23201071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of ENaC in the development of salt-sensitive hypertension.
    Pavlov TS; Staruschenko A
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F135-F140. PubMed ID: 28003189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Salt-induced hemodynamic regulation mediated by nitric oxide.
    Toda N; Arakawa K
    J Hypertens; 2011 Mar; 29(3):415-24. PubMed ID: 21150639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct rapid and slow phases of salt-induced hypertension in Dahl salt-sensitive rats.
    Van Vliet BN; Chafe LL; Halfyard SJ; Leonard AM
    J Hypertens; 2006 Aug; 24(8):1599-606. PubMed ID: 16877963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Withdrawal-induced antihypertensive effect of vasopressin: role of the L-arginine/nitric oxide pathway.
    Talom RT; McNeill JR
    Can J Physiol Pharmacol; 1997 Jul; 75(7):812-7. PubMed ID: 9315348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dietary iron restriction prevents hypertensive cardiovascular remodeling in Dahl salt-sensitive rats.
    Naito Y; Hirotani S; Sawada H; Akahori H; Tsujino T; Masuyama T
    Hypertension; 2011 Mar; 57(3):497-504. PubMed ID: 21263124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Platelet calcium handling is different in rats with salt-dependent and spontaneous forms of genetic hypertension.
    Zicha J; Kunes J; Devynck MA
    Am J Hypertens; 1996 Aug; 9(8):812-8. PubMed ID: 8862228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of nitric oxide and the renin-angiotensin system in salt-restricted Dahl rats.
    Kataoka H; Otsuka F; Ogura T; Yamauchi T; Kishida M; Takahashi M; Mimura Y; Makino H
    Am J Hypertens; 2001 Mar; 14(3):276-85. PubMed ID: 11281241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic characterization of the "new" Harlan Sprague Dawley Dahl salt-sensitive rats.
    Walder RY; Morgan DA; Haynes WG; Sigmund RD; McClain AM; Stokes JB; Mark AL
    Hypertension; 1996 Mar; 27(3 Pt 2):546-51. PubMed ID: 8613201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vascular smooth muscle nitric oxide synthase anomalies in Dahl/Rapp salt-sensitive rats.
    Chen PY; Gladish RD; Sanders PW
    Hypertension; 1998 Apr; 31(4):918-24. PubMed ID: 9535415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The protective effect of Liu-Wei-Di-Huang-Fang in salt-sensitive hypertension rats.
    Yang Q; He Y; Wang W
    Clin Exp Hypertens; 2014; 36(6):426-32. PubMed ID: 24164386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Rac1 GTPase in salt-sensitive hypertension.
    Nagase M
    Curr Opin Nephrol Hypertens; 2013 Mar; 22(2):148-55. PubMed ID: 23377658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of prolyl hydroxylase domain-containing protein on hypertension/renal injury induced by high salt diet and nitric oxide withdrawal.
    Dallatu MK; Choi M; Oyekan AO
    J Hypertens; 2013 Oct; 31(10):2043-9. PubMed ID: 23811999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N-Acetylcysteine improves renal dysfunction, ameliorates kidney damage and decreases blood pressure in salt-sensitive hypertension.
    Tian N; Rose RA; Jordan S; Dwyer TM; Hughson MD; Manning RD
    J Hypertens; 2006 Nov; 24(11):2263-70. PubMed ID: 17053549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic linkage of albuminuria and renal injury in Dahl salt-sensitive rats on a high-salt diet: comparison with spontaneously hypertensive rats.
    Siegel AK; Kossmehl P; Planert M; Schulz A; Wehland M; Stoll M; Bruijn JA; de Heer E; Kreutz R
    Physiol Genomics; 2004 Jul; 18(2):218-25. PubMed ID: 15161966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.