These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 9158355)
1. Rehydration of desiccated Baralyme prevents carbon monoxide formation from desflurane in an anesthesia machine. Baxter PJ; Kharasch ED Anesthesiology; 1997 May; 86(5):1061-5. PubMed ID: 9158355 [TBL] [Abstract][Full Text] [Related]
2. High carboxyhemoglobin concentrations occur in swine during desflurane anesthesia in the presence of partially dried carbon dioxide absorbents. Frink EJ; Nogami WM; Morgan SE; Salmon RC Anesthesiology; 1997 Aug; 87(2):308-16. PubMed ID: 9286895 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Amsorb, sodalime, and Baralyme degradation of volatile anesthetics and formation of carbon monoxide and compound a in swine in vivo. Kharasch ED; Powers KM; Artru AA Anesthesiology; 2002 Jan; 96(1):173-82. PubMed ID: 11753018 [TBL] [Abstract][Full Text] [Related]
4. Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and Baralyme. Fang ZX; Eger EI; Laster MJ; Chortkoff BS; Kandel L; Ionescu P Anesth Analg; 1995 Jun; 80(6):1187-93. PubMed ID: 7762850 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic aspects of carbon monoxide formation from volatile anesthetics. Baxter PJ; Garton K; Kharasch ED Anesthesiology; 1998 Oct; 89(4):929-41. PubMed ID: 9778011 [TBL] [Abstract][Full Text] [Related]
6. Temperatures in soda lime during degradation of desflurane, isoflurane, and sevoflurane by desiccated soda lime. Laster MJ; Eger EI Anesth Analg; 2005 Sep; 101(3):753-757. PubMed ID: 16115987 [TBL] [Abstract][Full Text] [Related]
7. The elimination of sodium and potassium hydroxides from desiccated soda lime diminishes degradation of desflurane to carbon monoxide and sevoflurane to compound A but does not compromise carbon dioxide absorption. Neumann MA; Laster MJ; Weiskopf RB; Gong DH; Dudziak R; Förster H; Eger EI Anesth Analg; 1999 Sep; 89(3):768-73. PubMed ID: 10475323 [TBL] [Abstract][Full Text] [Related]
8. Physical factors affecting the production of carbon monoxide from anesthetic breakdown. Woehlck HJ; Dunning M; Raza T; Ruiz F; Bolla B; Zink W Anesthesiology; 2001 Mar; 94(3):453-6. PubMed ID: 11374605 [TBL] [Abstract][Full Text] [Related]
9. Amsorb: a new carbon dioxide absorbent for use in anesthetic breathing systems. Murray JM; Renfrew CW; Bedi A; McCrystal CB; Jones DS; Fee JP Anesthesiology; 1999 Nov; 91(5):1342-8. PubMed ID: 10551585 [TBL] [Abstract][Full Text] [Related]
10. Carbon monoxide production from desflurane and six types of carbon dioxide absorbents in a patient model. Keijzer C; Perez RS; de Lange JJ Acta Anaesthesiol Scand; 2005 Jul; 49(6):815-8. PubMed ID: 15954965 [TBL] [Abstract][Full Text] [Related]
11. Carbon monoxide production from desflurane, enflurane, halothane, isoflurane, and sevoflurane with dry soda lime. Wissing H; Kuhn I; Warnken U; Dudziak R Anesthesiology; 2001 Nov; 95(5):1205-12. PubMed ID: 11684991 [TBL] [Abstract][Full Text] [Related]
12. Low-flow anesthesia and reduced animal size increase carboxyhemoglobin levels in swine during desflurane and isoflurane breakdown in dried soda lime. Bonome C; Belda J; Alvarez-Refojo F; Soro M; Fernández-Goti C; Cortés A Anesth Analg; 1999 Oct; 89(4):909-16. PubMed ID: 10607409 [TBL] [Abstract][Full Text] [Related]
13. Important role of calcium chloride in preventing carbon monoxide generation during desflurane degradation with alkali hydroxide-free carbon dioxide absorbents. Ando T; Mori A; Ito R; Nishiwaki K J Anesth; 2017 Dec; 31(6):911-914. PubMed ID: 28831619 [TBL] [Abstract][Full Text] [Related]
14. Absorbents differ enormously in their capacity to produce compound A and carbon monoxide. Stabernack CR; Brown R; Laster MJ; Dudziak R; Eger EI Anesth Analg; 2000 Jun; 90(6):1428-35. PubMed ID: 10825335 [TBL] [Abstract][Full Text] [Related]
15. Fires from the interaction of anesthetics with desiccated absorbent. Laster M; Roth P; Eger EI Anesth Analg; 2004 Sep; 99(3):769-774. PubMed ID: 15333409 [TBL] [Abstract][Full Text] [Related]
16. Detection of carbon monoxide production as a result of the interaction of five volatile anesthetics and desiccated sodalime with an electrochemical carbon monoxide sensor in an anesthetic circuit compared to gas chromatography. Keijzer C; Perez RS; de Lange JJ J Clin Monit Comput; 2007 Aug; 21(4):257-64. PubMed ID: 17597416 [TBL] [Abstract][Full Text] [Related]
17. Interaction of inhalational anaesthetics with CO2 absorbents. Baum JA; Woehlck HJ Best Pract Res Clin Anaesthesiol; 2003 Mar; 17(1):63-76. PubMed ID: 12751549 [TBL] [Abstract][Full Text] [Related]
18. Mass spectrometry provides warning of carbon monoxide exposure via trifluoromethane. Woehick HJ; Dunning M; Nithipatikom K; Kulier AH; Henry DW Anesthesiology; 1996 Jun; 84(6):1489-93. PubMed ID: 8669691 [TBL] [Abstract][Full Text] [Related]
19. [Degradation of halothane, enflurane, and isoflurane by dry soda lime to give carbon monoxide]. Strauss JM; Baum J; Sümpelmann R; Krohn S; Callies A Anaesthesist; 1996 Sep; 45(9):798-801. PubMed ID: 8967596 [TBL] [Abstract][Full Text] [Related]
20. Factors affecting production of compound A from the interaction of sevoflurane with Baralyme and soda lime. Fang ZX; Kandel L; Laster MJ; Ionescu P; Eger EI Anesth Analg; 1996 Apr; 82(4):775-81. PubMed ID: 8615497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]