BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 9158355)

  • 1. Rehydration of desiccated Baralyme prevents carbon monoxide formation from desflurane in an anesthesia machine.
    Baxter PJ; Kharasch ED
    Anesthesiology; 1997 May; 86(5):1061-5. PubMed ID: 9158355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High carboxyhemoglobin concentrations occur in swine during desflurane anesthesia in the presence of partially dried carbon dioxide absorbents.
    Frink EJ; Nogami WM; Morgan SE; Salmon RC
    Anesthesiology; 1997 Aug; 87(2):308-16. PubMed ID: 9286895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Amsorb, sodalime, and Baralyme degradation of volatile anesthetics and formation of carbon monoxide and compound a in swine in vivo.
    Kharasch ED; Powers KM; Artru AA
    Anesthesiology; 2002 Jan; 96(1):173-82. PubMed ID: 11753018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and Baralyme.
    Fang ZX; Eger EI; Laster MJ; Chortkoff BS; Kandel L; Ionescu P
    Anesth Analg; 1995 Jun; 80(6):1187-93. PubMed ID: 7762850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic aspects of carbon monoxide formation from volatile anesthetics.
    Baxter PJ; Garton K; Kharasch ED
    Anesthesiology; 1998 Oct; 89(4):929-41. PubMed ID: 9778011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperatures in soda lime during degradation of desflurane, isoflurane, and sevoflurane by desiccated soda lime.
    Laster MJ; Eger EI
    Anesth Analg; 2005 Sep; 101(3):753-757. PubMed ID: 16115987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The elimination of sodium and potassium hydroxides from desiccated soda lime diminishes degradation of desflurane to carbon monoxide and sevoflurane to compound A but does not compromise carbon dioxide absorption.
    Neumann MA; Laster MJ; Weiskopf RB; Gong DH; Dudziak R; Förster H; Eger EI
    Anesth Analg; 1999 Sep; 89(3):768-73. PubMed ID: 10475323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical factors affecting the production of carbon monoxide from anesthetic breakdown.
    Woehlck HJ; Dunning M; Raza T; Ruiz F; Bolla B; Zink W
    Anesthesiology; 2001 Mar; 94(3):453-6. PubMed ID: 11374605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amsorb: a new carbon dioxide absorbent for use in anesthetic breathing systems.
    Murray JM; Renfrew CW; Bedi A; McCrystal CB; Jones DS; Fee JP
    Anesthesiology; 1999 Nov; 91(5):1342-8. PubMed ID: 10551585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon monoxide production from desflurane and six types of carbon dioxide absorbents in a patient model.
    Keijzer C; Perez RS; de Lange JJ
    Acta Anaesthesiol Scand; 2005 Jul; 49(6):815-8. PubMed ID: 15954965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon monoxide production from desflurane, enflurane, halothane, isoflurane, and sevoflurane with dry soda lime.
    Wissing H; Kuhn I; Warnken U; Dudziak R
    Anesthesiology; 2001 Nov; 95(5):1205-12. PubMed ID: 11684991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-flow anesthesia and reduced animal size increase carboxyhemoglobin levels in swine during desflurane and isoflurane breakdown in dried soda lime.
    Bonome C; Belda J; Alvarez-Refojo F; Soro M; Fernández-Goti C; Cortés A
    Anesth Analg; 1999 Oct; 89(4):909-16. PubMed ID: 10607409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Important role of calcium chloride in preventing carbon monoxide generation during desflurane degradation with alkali hydroxide-free carbon dioxide absorbents.
    Ando T; Mori A; Ito R; Nishiwaki K
    J Anesth; 2017 Dec; 31(6):911-914. PubMed ID: 28831619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorbents differ enormously in their capacity to produce compound A and carbon monoxide.
    Stabernack CR; Brown R; Laster MJ; Dudziak R; Eger EI
    Anesth Analg; 2000 Jun; 90(6):1428-35. PubMed ID: 10825335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fires from the interaction of anesthetics with desiccated absorbent.
    Laster M; Roth P; Eger EI
    Anesth Analg; 2004 Sep; 99(3):769-774. PubMed ID: 15333409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of carbon monoxide production as a result of the interaction of five volatile anesthetics and desiccated sodalime with an electrochemical carbon monoxide sensor in an anesthetic circuit compared to gas chromatography.
    Keijzer C; Perez RS; de Lange JJ
    J Clin Monit Comput; 2007 Aug; 21(4):257-64. PubMed ID: 17597416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of inhalational anaesthetics with CO2 absorbents.
    Baum JA; Woehlck HJ
    Best Pract Res Clin Anaesthesiol; 2003 Mar; 17(1):63-76. PubMed ID: 12751549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometry provides warning of carbon monoxide exposure via trifluoromethane.
    Woehick HJ; Dunning M; Nithipatikom K; Kulier AH; Henry DW
    Anesthesiology; 1996 Jun; 84(6):1489-93. PubMed ID: 8669691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Degradation of halothane, enflurane, and isoflurane by dry soda lime to give carbon monoxide].
    Strauss JM; Baum J; Sümpelmann R; Krohn S; Callies A
    Anaesthesist; 1996 Sep; 45(9):798-801. PubMed ID: 8967596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting production of compound A from the interaction of sevoflurane with Baralyme and soda lime.
    Fang ZX; Kandel L; Laster MJ; Ionescu P; Eger EI
    Anesth Analg; 1996 Apr; 82(4):775-81. PubMed ID: 8615497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.