These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Transposon-mediated insertional mutagenesis of the D-alanyl-lipoteichoic acid (dlt) operon raises methicillin resistance in Staphylococcus aureus. Nakao A; Imai S; Takano T Res Microbiol; 2000 Dec; 151(10):823-9. PubMed ID: 11191807 [TBL] [Abstract][Full Text] [Related]
23. Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. Henze U; Sidow T; Wecke J; Labischinski H; Berger-Bächi B J Bacteriol; 1993 Mar; 175(6):1612-20. PubMed ID: 8383661 [TBL] [Abstract][Full Text] [Related]
24. Insertional inactivation of the mec gene in a transposon mutant of a methicillin-resistant clinical isolate of Staphylococcus aureus. Matthews P; Tomasz A Antimicrob Agents Chemother; 1990 Sep; 34(9):1777-9. PubMed ID: 2178337 [TBL] [Abstract][Full Text] [Related]
25. Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR gene. Schreier HJ; Brown SW; Hirschi KD; Nomellini JF; Sonenshein AL J Mol Biol; 1989 Nov; 210(1):51-63. PubMed ID: 2573733 [TBL] [Abstract][Full Text] [Related]
26. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Wu S; Piscitelli C; de Lencastre H; Tomasz A Microb Drug Resist; 1996; 2(4):435-41. PubMed ID: 9158816 [TBL] [Abstract][Full Text] [Related]
27. Eagle-type methicillin resistance: new phenotype of high methicillin resistance under mec regulator gene control. Kondo N; Kuwahara-Arai K; Kuroda-Murakami H; Tateda-Suzuki E; Hiramatsu K Antimicrob Agents Chemother; 2001 Mar; 45(3):815-24. PubMed ID: 11181367 [TBL] [Abstract][Full Text] [Related]
28. Molecular aspects of methicillin resistance in Staphylococcus aureus. de Lencastre H; de Jonge BL; Matthews PR; Tomasz A J Antimicrob Chemother; 1994 Jan; 33(1):7-24. PubMed ID: 8157576 [TBL] [Abstract][Full Text] [Related]
29. Massive reduction in methicillin resistance by transposon inactivation of the normal PBP2 in a methicillin-resistant strain of Staphylococcus aureus. Pinho MG; Ludovice AM; Wu S; De Lencastre H Microb Drug Resist; 1997; 3(4):409-13. PubMed ID: 9442495 [TBL] [Abstract][Full Text] [Related]
30. Occurrence and characteristics of methicillin-resistant and -susceptible Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci from Japanese retail ready-to-eat raw fish. Hammad AM; Watanabe W; Fujii T; Shimamoto T Int J Food Microbiol; 2012 Jun; 156(3):286-9. PubMed ID: 22541390 [TBL] [Abstract][Full Text] [Related]
31. Cloning, heterologous expression, and sequencing of the Proteus vulgaris glnAntrBC operon and implications of nitrogen control on heterologous urease expression. Steglitz-Mörsdorf U; Mörsdorf G; Kaltwasser H FEMS Microbiol Lett; 1993 Jan; 106(2):157-64. PubMed ID: 8095910 [TBL] [Abstract][Full Text] [Related]
32. Molecular cloning and expression in Escherichia coli of bleomycin-resistance gene from a methicillin-resistant Staphylococcus aureus and its association with IS431 mec. Bhuiyan MZ; Ueda K; Inouye Y; Sugiyama M Appl Microbiol Biotechnol; 1995 Apr; 43(1):65-9. PubMed ID: 7537047 [TBL] [Abstract][Full Text] [Related]
33. Insertional inactivation of staphylococcal methicillin resistance by Tn551. Berger-Bächi B J Bacteriol; 1983 Apr; 154(1):479-87. PubMed ID: 6300037 [TBL] [Abstract][Full Text] [Related]
34. Next-Generation Sequence Analysis Reveals Transfer of Methicillin Resistance to a Methicillin-Susceptible Staphylococcus aureus Strain That Subsequently Caused a Methicillin-Resistant Staphylococcus aureus Outbreak: a Descriptive Study. Weterings V; Bosch T; Witteveen S; Landman F; Schouls L; Kluytmans J J Clin Microbiol; 2017 Sep; 55(9):2808-2816. PubMed ID: 28679522 [TBL] [Abstract][Full Text] [Related]
35. Mutations in the Bacillus subtilis glnRA operon that cause nitrogen source-dependent defects in regulation of TnrA activity. Fisher SH; Wray LV J Bacteriol; 2002 Aug; 184(16):4636-9. PubMed ID: 12142436 [TBL] [Abstract][Full Text] [Related]
36. Normally functioning murF is essential for the optimal expression of methicillin resistance in Staphylococcus aureus. Sobral RG; Ludovice AM; Gardete S; Tabei K; De Lencastre H; Tomasz A Microb Drug Resist; 2003; 9(3):231-41. PubMed ID: 12959401 [TBL] [Abstract][Full Text] [Related]
37. Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus. Maki H; Yamaguchi T; Murakami K J Bacteriol; 1994 Aug; 176(16):4993-5000. PubMed ID: 8051012 [TBL] [Abstract][Full Text] [Related]
38. Increase of methicillin resistance in Staphylococcus aureus caused by deletion of a gene whose product is homologous to lytic enzymes. Fujimura T; Murakami K J Bacteriol; 1997 Oct; 179(20):6294-301. PubMed ID: 9335275 [TBL] [Abstract][Full Text] [Related]
39. Evolutionary relationships between sporadic and epidemic strains of healthcare-associated methicillin-resistant Staphylococcus aureus. Hallin M; Denis O; Deplano A; De Ryck R; Crèvecoeur S; Rottiers S; de Mendonça R; Struelens MJ Clin Microbiol Infect; 2008 Jul; 14(7):659-69. PubMed ID: 18558938 [TBL] [Abstract][Full Text] [Related]
40. FemA, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus: molecular cloning and characterization. Berger-Bächi B; Barberis-Maino L; Strässle A; Kayser FH Mol Gen Genet; 1989 Oct; 219(1-2):263-9. PubMed ID: 2559314 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]