BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9159227)

  • 1. Human sperm activation during capacitation and acrosome reaction: role of calcium, protein phosphorylation and lipid remodelling pathways.
    Baldi E; Luconi M; Bonaccorsi L; Krausz C; Forti G
    Front Biosci; 1996 Aug; 1():d189-205. PubMed ID: 9159227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride Is essential for capacitation and for the capacitation-associated increase in tyrosine phosphorylation.
    Wertheimer EV; Salicioni AM; Liu W; Trevino CL; Chavez J; Hernández-González EO; Darszon A; Visconti PE
    J Biol Chem; 2008 Dec; 283(51):35539-50. PubMed ID: 18957426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The compound YK 3-237 promotes pig sperm capacitation-related events.
    Martín-Hidalgo D; Solar-Málaga S; González-Fernández L; Zamorano J; García-Marín LJ; Bragado MJ
    Vet Res Commun; 2024 Apr; 48(2):773-786. PubMed ID: 37906355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms That Protect Mammalian Sperm from the Spontaneous Acrosome Reaction.
    Breitbart H; Grinshtein E
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipidomics profiles of human spermatozoa: insights into capacitation and acrosome reaction using UPLC-MS-based approach.
    Cheng X; Xie H; Xiong Y; Sun P; Xue Y; Li K
    Front Endocrinol (Lausanne); 2023; 14():1273878. PubMed ID: 38027124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases.
    Ickowicz D; Finkelstein M; Breitbart H
    Asian J Androl; 2012 Nov; 14(6):816-21. PubMed ID: 23001443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion channels, phosphorylation and mammalian sperm capacitation.
    Visconti PE; Krapf D; de la Vega-Beltrán JL; Acevedo JJ; Darszon A
    Asian J Androl; 2011 May; 13(3):395-405. PubMed ID: 21540868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-ejaculatory modifications to sperm (PEMS).
    Pitnick S; Wolfner MF; Dorus S
    Biol Rev Camb Philos Soc; 2020 Apr; 95(2):365-392. PubMed ID: 31737992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular pH in sperm physiology.
    Nishigaki T; José O; González-Cota AL; Romero F; Treviño CL; Darszon A
    Biochem Biophys Res Commun; 2014 Aug; 450(3):1149-58. PubMed ID: 24887564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exosomes from uterine fluid promote capacitation of human sperm.
    Deng R; Wu Z; He C; Lu C; He D; Li X; Duan Z; Zhao H
    PeerJ; 2024; 12():e16875. PubMed ID: 38680889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct activation of the proton channel by albumin leads to human sperm capacitation and sustained release of inflammatory mediators by neutrophils.
    Zhao R; Dai H; Arias RJ; De Blas GA; Orta G; Pavarotti MA; Shen R; Perozo E; Mayorga LS; Darszon A; Goldstein SAN
    Nat Commun; 2021 Jun; 12(1):3855. PubMed ID: 34158477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function.
    Pinto FM; Odriozola A; Candenas L; Subirán N
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of ezrin-associated protein network in human sperm capacitation.
    Wang L; Chen W; Zhao C; Huo R; Guo XJ; Lin M; Huang XY; Mao YD; Zhou ZM; Sha JH
    Asian J Androl; 2010 Sep; 12(5):667-76. PubMed ID: 20711218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology.
    Liu LL; Xian H; Cao JC; Zhang C; Zhang YH; Chen MM; Qian Y; Jiang M
    Asian J Androl; 2015; 17(6):942-7. PubMed ID: 25851655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive proteomic approach to identifying capacitation related proteins in boar spermatozoa.
    Kwon WS; Rahman MS; Lee JS; Kim J; Yoon SJ; Park YJ; You YA; Hwang S; Pang MG
    BMC Genomics; 2014 Oct; 15(1):897. PubMed ID: 25315394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic Changes in Human Sperm During Sequential
    Castillo J; Bogle OA; Jodar M; Torabi F; Delgado-Dueñas D; Estanyol JM; Ballescà JL; Miller D; Oliva R
    Front Cell Dev Biol; 2019; 7():295. PubMed ID: 31824947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lectin spatial immunolocalization during
    Robles-Gómez L; Fuentes-Albero MDC; Huerta-Retamal N; Sáez-Espinosa P; García-Párraga D; Romero A; Gómez-Torres MJ
    Anim Reprod; 2020 Feb; 17(1):e20190083. PubMed ID: 32405328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences and Similarities: The Richness of Comparative Sperm Physiology.
    Darszon A; Nishigaki T; López-González I; Visconti PE; Treviño CL
    Physiology (Bethesda); 2020 May; 35(3):196-208. PubMed ID: 32293232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The other side of capacitation: role of mouse male molecules in the regulation of time and place of capacitation.
    Nicolli AR; Cesari A
    Reproduction; 2023 Dec; 166(6):R73-R85. PubMed ID: 37796747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signaling Roleplay between Ion Channels during Mammalian Sperm Capacitation.
    Benko F; Urminská D; Ďuračka M; Tvrdá E
    Biomedicines; 2023 Sep; 11(9):. PubMed ID: 37760960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.