BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9159466)

  • 1. Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli.
    Condon C; Putzer H; Luo D; Grunberg-Manago M
    J Mol Biol; 1997 May; 268(2):235-42. PubMed ID: 9159466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli RNase E and RNase G cleave a Bacillus subtilis transcript at the same site in a structure-dependent manner.
    Hambraeus G; Rutberg B
    Arch Microbiol; 2004 Feb; 181(2):137-43. PubMed ID: 14685649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between translational control and mRNA degradation for the Escherichia coli threonyl-tRNA synthetase gene.
    Nogueira T; de Smit M; Graffe M; Springer M
    J Mol Biol; 2001 Jul; 310(4):709-22. PubMed ID: 11453682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing of the leader mRNA plays a major role in the induction of thrS expression following threonine starvation in Bacillus subtilis.
    Condon C; Putzer H; Grunberg-Manago M
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):6992-7. PubMed ID: 8692931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis.
    Pellegrini O; Nezzar J; Marchfelder A; Putzer H; Condon C
    EMBO J; 2003 Sep; 22(17):4534-43. PubMed ID: 12941704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNase Z in Escherichia coli plays a significant role in mRNA decay.
    Perwez T; Kushner SR
    Mol Microbiol; 2006 May; 60(3):723-37. PubMed ID: 16629673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth rate-dependent control, feedback regulation and steady-state mRNA levels of the threonyl-tRNA synthetase gene of Escherichia coli.
    Comer MM; Dondon J; Graffe M; Yarchuk O; Springer M
    J Mol Biol; 1996 Aug; 261(2):108-24. PubMed ID: 8757280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E.
    Even S; Pellegrini O; Zig L; Labas V; Vinh J; Bréchemmier-Baey D; Putzer H
    Nucleic Acids Res; 2005; 33(7):2141-52. PubMed ID: 15831787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of RNA structure in determining RNase E-dependent cleavage sites in the mRNA for ribosomal protein S20 in vitro.
    Mackie GA; Genereaux JL
    J Mol Biol; 1993 Dec; 234(4):998-1012. PubMed ID: 7505337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo secondary structure probing of the thrS leader in Bacillus subtilis.
    Luo D; Condon C; Grunberg-Manago M; Putzer H
    Nucleic Acids Res; 1998 Dec; 26(23):5379-87. PubMed ID: 9826762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis.
    Warnecke JM; Held R; Busch S; Hartmann RK
    J Mol Biol; 1999 Jul; 290(2):433-45. PubMed ID: 10390342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of RNase E-mediated RNA degradation by 5'-terminal base pairing in E. coli.
    Bouvet P; Belasco JG
    Nature; 1992 Dec; 360(6403):488-91. PubMed ID: 1280335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of FinP antisense RNA from F-like plasmids: the RNA-binding protein, FinO, protects FinP from ribonuclease E.
    Jerome LJ; van Biesen T; Frost LS
    J Mol Biol; 1999 Jan; 285(4):1457-73. PubMed ID: 9917389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In the absence of translation, RNase E can bypass 5' mRNA stabilizers in Escherichia coli.
    Joyce SA; Dreyfus M
    J Mol Biol; 1998 Sep; 282(2):241-54. PubMed ID: 9735284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of both Bacillus subtilis threonyl-tRNA synthetase genes is autogenously regulated.
    Gendron N; Putzer H; Grunberg-Manago M
    J Bacteriol; 1994 Jan; 176(2):486-94. PubMed ID: 8288542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence.
    Putzer H; Gendron N; Grunberg-Manago M
    EMBO J; 1992 Aug; 11(8):3117-27. PubMed ID: 1379177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro.
    Grundy FJ; Henkin TM
    J Bacteriol; 2004 Aug; 186(16):5392-9. PubMed ID: 15292140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetrical interactions between the translational operator of the thrS gene and dimeric threonyl transfer RNA synthetase.
    Bedouelle H
    J Mol Biol; 1993 Apr; 230(3):704-8. PubMed ID: 7683056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expression of E.coli threonyl-tRNA synthetase is regulated at the translational level by symmetrical operator-repressor interactions.
    Romby P; Caillet J; Ebel C; Sacerdot C; Graffe M; Eyermann F; Brunel C; Moine H; Ehresmann C; Ehresmann B; Springer M
    EMBO J; 1996 Nov; 15(21):5976-87. PubMed ID: 8918475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of RNA structure and susceptibility to RNase E in regulation of a cold shock mRNA, cspA mRNA.
    Hankins JS; Zappavigna C; Prud'homme-Généreux A; Mackie GA
    J Bacteriol; 2007 Jun; 189(12):4353-8. PubMed ID: 17416651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.