BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 9159885)

  • 21. Hydrogen Sulphide Production in Healthy and Ulcerated Gastric Mucosa of Rats.
    Bronowicka-Adamska P; Wróbel M; Magierowski M; Magierowska K; Kwiecień S; Brzozowski T
    Molecules; 2017 Mar; 22(4):. PubMed ID: 28346391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interspecies differences in rhodanese (thiosulfate sulfurtransferase, EC 2.8.1.1) activity in liver, kidney and plasma.
    Drawbaugh RB; Marrs TC
    Comp Biochem Physiol B; 1987; 86(2):307-10. PubMed ID: 3105953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism of 3-mercaptopyruvate in rat tissues.
    Kiguchi S
    Acta Med Okayama; 1983 Apr; 37(2):85-91. PubMed ID: 6869067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective effects of diallyl disulfide, a sulfane sulfur precursor, in the liver and Ehrlich ascites tumor cells.
    Iciek M; Marcinek J; Mleczko U; Włodek L
    Eur J Pharmacol; 2007 Aug; 569(1-2):1-7. PubMed ID: 17560567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulfurtransferases and cyanide detoxification in mouse liver, kidney, and brain.
    Wróbel M; Jurkowska H; Sliwa L; Srebro Z
    Toxicol Mech Methods; 2004; 14(6):331-7. PubMed ID: 20021099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of nitrogen oxide level modulation on the content of thiol compounds and anaerobic sulfur metabolism in mice brains.
    Sokołowska M; Włodek L; Srebro Z; Wróbel M
    Neurobiology (Bp); 1999; 7(4):461-77. PubMed ID: 10897806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of some biochemical properties of liver thiosulphate sulphurtransferase from guinea pig (Lepus caniculus) & albino rat.
    Anosike EO; Jack AS
    Indian J Biochem Biophys; 1982 Feb; 19(1):13-6. PubMed ID: 6286464
    [No Abstract]   [Full Text] [Related]  

  • 28. Increased Urinary 3-Mercaptolactate Excretion and Enhanced Passive Systemic Anaphylaxis in Mice Lacking Mercaptopyruvate Sulfurtransferase, a Model of Mercaptolactate-Cysteine Disulfiduria.
    Akahoshi N; Minakawa T; Miyashita M; Sugiyama U; Saito C; Takemoto R; Honda A; Kamichatani W; Kamata S; Anan Y; Ishii I
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32012740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative studies on the distribution of rhodanese and beta-mercaptopyruvate sulfurtransferase in different organs of sheep (Ovis aries) and cattle (Bos taurus).
    Aminlari M; Gilanpour H; Taghavianpour H; Veseghi T
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 92(2):259-62. PubMed ID: 2565183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of glycosaminoglycans accumulation on the non-oxidative sulfur metabolism in mouse model of Sanfilippo syndrome, type B.
    Kaczor-Kamińska M; Kamiński K; Stalińska K; Wróbel M; Feldman A
    Acta Biochim Pol; 2019 Dec; 66(4):567-576. PubMed ID: 31805227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transaminative pathway of cysteine metabolism in rat tissues.
    Ishimoto Y
    Physiol Chem Phys; 1979; 11(2):189-91. PubMed ID: 482391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen sulfide generation from l-cysteine in the human glioblastoma-astrocytoma U-87 MG and neuroblastoma SHSY5Y cell lines.
    Bronowicka-Adamska P; Bentke A; Wróbel M
    Acta Biochim Pol; 2017; 64(1):171-176. PubMed ID: 28291844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assay methods for H2S biogenesis and catabolism enzymes.
    Banerjee R; Chiku T; Kabil O; Libiad M; Motl N; Yadav PK
    Methods Enzymol; 2015; 554():189-200. PubMed ID: 25725523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of cystathionase in the formation of alkane-thiols from corresponding cysteine conjugates.
    Tomisawa H; Ichimoto N; Ichihara S; Fukazawa H; Tateishi M
    Xenobiotica; 1988 Sep; 18(9):1029-37. PubMed ID: 2852420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biological actions of lipoic acid associated with sulfane sulfur metabolism.
    Bilska A; Dudek M; Iciek M; Kwiecień I; Sokołowska-Jezewicz M; Filipek B; Włodek L
    Pharmacol Rep; 2008; 60(2):225-32. PubMed ID: 18443384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regional and subcellular distribution of cyanide metabolizing enzymes in the central nervous system.
    Mimori Y; Nakamura S; Kameyama M
    J Neurochem; 1984 Aug; 43(2):540-5. PubMed ID: 6588145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of the uremic toxin cyanate (CNO⁻) on anaerobic cysteine metabolism and oxidative processes in the rat liver: a protective effect of lipoate.
    Sokołowska M; Niedzielska E; Iciek M; Bilska A; Lorenc-Koci E; Włodek L
    Toxicol Mech Methods; 2011 Jul; 21(6):473-8. PubMed ID: 21417628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transaminative metabolism of L-cysteine in guinea pig liver and kidney.
    Taniguchi M; Hosaki Y; Ubuka T
    Acta Med Okayama; 1984 Aug; 38(4):375-80. PubMed ID: 6496171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhodanese, but not cystathionine-gamma-lyase, is associated with dextran sulfate sodium-evoked colitis in mice: a sign of impaired colonic sulfide detoxification?
    Taniguchi E; Matsunami M; Kimura T; Yonezawa D; Ishiki T; Sekiguchi F; Nishikawa H; Maeda Y; Ishikura H; Kawabata A
    Toxicology; 2009 Oct; 264(1-2):96-103. PubMed ID: 19647029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The inhibition of rhodanese by lipoate and iron-sulfur proteins.
    Pagani S; Bonomi F; Cerletti P
    Biochim Biophys Acta; 1983 Jan; 742(1):116-21. PubMed ID: 6402017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.