These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 9160528)
21. Protective efficacy of a parenterally administered MOMP-derived synthetic oligopeptide vaccine in a murine model of Chlamydia trachomatis genital tract infection: serum neutralizing IgG antibodies do not protect against chlamydial genital tract infection. Su H; Parnell M; Caldwell HD Vaccine; 1995 Aug; 13(11):1023-32. PubMed ID: 8525685 [TBL] [Abstract][Full Text] [Related]
22. Immunogenicity of a chimeric peptide corresponding to T helper and B cell epitopes of the Chlamydia trachomatis major outer membrane protein. Su H; Caldwell HD J Exp Med; 1992 Jan; 175(1):227-35. PubMed ID: 1370528 [TBL] [Abstract][Full Text] [Related]
23. DNA vaccination with the major outer-membrane protein gene induces acquired immunity to Chlamydia trachomatis (mouse pneumonitis) infection. Zhang D; Yang X; Berry J; Shen C; McClarty G; Brunham RC J Infect Dis; 1997 Oct; 176(4):1035-40. PubMed ID: 9333163 [TBL] [Abstract][Full Text] [Related]
24. Identification and characterization of T helper cell epitopes of the major outer membrane protein of Chlamydia trachomatis. Su H; Morrison RP; Watkins NG; Caldwell HD J Exp Med; 1990 Jul; 172(1):203-12. PubMed ID: 1694217 [TBL] [Abstract][Full Text] [Related]
25. Vaccination of mice with DNA plasmids coding for the Chlamydia trachomatis major outer membrane protein elicits an immune response but fails to protect against a genital challenge. Pal S; Barnhart KM; Wei Q; Abai AM; Peterson EM; de la Maza LM Vaccine; 1999 Feb; 17(5):459-65. PubMed ID: 10073724 [TBL] [Abstract][Full Text] [Related]
26. Effects of antibody isotype and host cell type on in vitro neutralization of Chlamydia trachomatis. Peterson EM; Cheng X; Pal S; de la Maza LM Infect Immun; 1993 Feb; 61(2):498-503. PubMed ID: 8423079 [TBL] [Abstract][Full Text] [Related]
27. Immunogenicity of a synthetic oligopeptide corresponding to antigenically common T-helper and B-cell neutralizing epitopes of the major outer membrane protein of Chlamydia trachomatis. Su H; Caldwell HD Vaccine; 1993; 11(11):1159-66. PubMed ID: 7504381 [TBL] [Abstract][Full Text] [Related]
28. Mapping of a surface-exposed B-cell epitope to the variable sequent 3 of the major outer-membrane protein of Chlamydia trachomatis. Pal S; Cheng X; Peterson EM; de la Maza LM J Gen Microbiol; 1993 Jul; 139(7):1565-70. PubMed ID: 7690394 [TBL] [Abstract][Full Text] [Related]
30. Antibodies to Variable Domain 4 Linear Epitopes of the Collar AL; Linville AC; Core SB; Wheeler CM; Geisler WM; Peabody DS; Chackerian B; Frietze KM mSphere; 2020 Sep; 5(5):. PubMed ID: 32968007 [No Abstract] [Full Text] [Related]
31. Protective monoclonal antibodies to Chlamydia trachomatis serovar- and serogroup-specific major outer membrane protein determinants. Zhang YX; Stewart SJ; Caldwell HD Infect Immun; 1989 Feb; 57(2):636-8. PubMed ID: 2463971 [TBL] [Abstract][Full Text] [Related]
32. Expression of mucosal homing receptor alpha4beta7 is associated with enhanced migration to the Chlamydia-infected murine genital mucosa in vivo. Hawkins RA; Rank RG; Kelly KA Infect Immun; 2000 Oct; 68(10):5587-94. PubMed ID: 10992458 [TBL] [Abstract][Full Text] [Related]
33. Vaccination with the Chlamydia trachomatis major outer membrane protein can elicit an immune response as protective as that resulting from inoculation with live bacteria. Pal S; Peterson EM; de la Maza LM Infect Immun; 2005 Dec; 73(12):8153-60. PubMed ID: 16299310 [TBL] [Abstract][Full Text] [Related]
34. Functional and structural mapping of Chlamydia trachomatis species-specific major outer membrane protein epitopes by use of neutralizing monoclonal antibodies. Peterson EM; Cheng X; Markoff BA; Fielder TJ; de la Maza LM Infect Immun; 1991 Nov; 59(11):4147-53. PubMed ID: 1718870 [TBL] [Abstract][Full Text] [Related]
35. The Verma R; Sahu R; Dixit S; Duncan SA; Giambartolomei GH; Singh SR; Dennis VA Front Immunol; 2018; 9():2369. PubMed ID: 30374357 [TBL] [Abstract][Full Text] [Related]
36. Production and characterization of monoclonal antibodies to Chlamydia trachomatis. Kumar A; Mittal A Hybridoma (Larchmt); 2006 Oct; 25(5):293-9. PubMed ID: 17044785 [TBL] [Abstract][Full Text] [Related]
37. Humoral immune response to membrane components of Chlamydia trachomatis and expression of human 60 kDa heat shock protein in follicular fluid of in-vitro fertilization patients. Neuer A; Lam KN; Tiller FW; Kiesel L; Witkin SS Hum Reprod; 1997 May; 12(5):925-9. PubMed ID: 9194641 [TBL] [Abstract][Full Text] [Related]
38. The role of lipopolysaccharide in the exposure of protective antigenic sites on the major outer membrane protein of Chlamydia trachomatis. Vretou E; Psarrou E; Spiliopoulou D J Gen Microbiol; 1992 Jun; 138(6):1221-7. PubMed ID: 1382112 [TBL] [Abstract][Full Text] [Related]
39. Protection against infertility in a BALB/c mouse salpingitis model by intranasal immunization with the mouse pneumonitis biovar of Chlamydia trachomatis. Pal S; Fielder TJ; Peterson EM; de la Maza LM Infect Immun; 1994 Aug; 62(8):3354-62. PubMed ID: 8039906 [TBL] [Abstract][Full Text] [Related]
40. Induction of HLA class I-restricted CD8+ CTLs specific for the major outer membrane protein of Chlamydia trachomatis in human genital tract infections. Kim SK; Angevine M; Demick K; Ortiz L; Rudersdorf R; Watkins D; DeMars R J Immunol; 1999 Jun; 162(11):6855-66. PubMed ID: 10352308 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]