These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 9161034)

  • 1. Tam3 produces a suppressible allele of the DAG locus of Antirrhinum majus similar to Mu-suppressible alleles of maize.
    Chatterjee M; Martin C
    Plant J; 1997 Apr; 11(4):759-71. PubMed ID: 9161034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic effects of short-range and aberrant transposition in Antirrhinum majus.
    Hudson AD; Carpenter R; Coen ES
    Plant Mol Biol; 1990 May; 14(5):835-44. PubMed ID: 1966387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutator-suppressible alleles of rough sheath1 and liguleless3 in maize reveal multiple mechanisms for suppression.
    Girard L; Freeling M
    Genetics; 2000 Jan; 154(1):437-46. PubMed ID: 10629001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants.
    Haring MA; Gao J; Volbeda T; Rommens CM; Nijkamp HJ; Hille J
    Plant Mol Biol; 1989 Aug; 13(2):189-201. PubMed ID: 2562396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA methylation is not necessary for the inactivation of the Tam3 transposon at non-permissive temperature in Antirrhinum.
    Hashida SN; Kishima Y; Mikami T
    J Plant Physiol; 2005 Nov; 162(11):1292-6. PubMed ID: 16323282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Position effect of the excision frequency of the Antirrhinum transposon Tam3: implications for the degree of position-dependent methylation in the ends of the element.
    Kitamura K; Hashida SN; Mikami T; Kishima Y
    Plant Mol Biol; 2001 Nov; 47(4):475-90. PubMed ID: 11669573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable transcription activities dependent on an orientation of Tam3 transposon insertions into Antirrhinum and yeast promoters occur only within chromatin.
    Uchiyama T; Fujino K; Ogawa T; Wakatsuki A; Kishima Y; Mikami T; Sano Y
    Plant Physiol; 2009 Nov; 151(3):1557-69. PubMed ID: 19759347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance to gap repair of the transposon Tam3 in Antirrhinum majus: a role of the end regions.
    Yamashita S; Takano-Shimizu T; Kitamura K; Mikami T; Kishima Y
    Genetics; 1999 Dec; 153(4):1899-908. PubMed ID: 10581294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome juggling by transposons: Tam3-induced rearrangements in Antirrhinum majus.
    Martin C; Lister C
    Dev Genet; 1989; 10(6):438-51. PubMed ID: 2557989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize.
    Hehl R; Nacken WK; Krause A; Saedler H; Sommer H
    Plant Mol Biol; 1991 Feb; 16(2):369-71. PubMed ID: 1654157
    [No Abstract]   [Full Text] [Related]  

  • 11. The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase.
    Hashida SN; Uchiyama T; Martin C; Kishima Y; Sano Y; Mikami T
    Plant Cell; 2006 Jan; 18(1):104-18. PubMed ID: 16326924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus.
    Coen ES; Carpenter R; Martin C
    Cell; 1986 Oct; 47(2):285-96. PubMed ID: 3021338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus.
    Hashida SN; Kitamura K; Mikami T; Kishima Y
    Plant Physiol; 2003 Jul; 132(3):1207-16. PubMed ID: 12857803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural conservation of the transposon Tam3 family in Antirrhinum majus and estimation of the number of copies able to transpose.
    Kishima Y; Yamashita S; Martin C; Mikami T
    Plant Mol Biol; 1999 Jan; 39(2):299-308. PubMed ID: 10080696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pair of transposons coordinately suppresses gene expression, independent of pathways mediated by siRNA in Antirrhinum.
    Uchiyama T; Hiura S; Ebinuma I; Senda M; Mikami T; Martin C; Kishima Y
    New Phytol; 2013 Jan; 197(2):431-440. PubMed ID: 23190182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DAG, a gene required for chloroplast differentiation and palisade development in Antirrhinum majus.
    Chatterjee M; Sparvoli S; Edmunds C; Garosi P; Findlay K; Martin C
    EMBO J; 1996 Aug; 15(16):4194-207. PubMed ID: 8861948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm.
    Tacke E; Korfhage C; Michel D; Maddaloni M; Motto M; Lanzini S; Salamini F; Döring HP
    Plant J; 1995 Dec; 8(6):907-17. PubMed ID: 8580961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3.
    Calvi BR; Hong TJ; Findley SD; Gelbart WM
    Cell; 1991 Aug; 66(3):465-71. PubMed ID: 1651170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transposition of reversed Ac element ends generates novel chimeric genes in maize.
    Zhang J; Zhang F; Peterson T
    PLoS Genet; 2006 Oct; 2(10):e164. PubMed ID: 17029561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative transcription initiation sites and polyadenylation sites are recruited during Mu suppression at the rf2a locus of maize.
    Cui X; Hsia AP; Liu F; Ashlock DA; Wise RP; Schnable PS
    Genetics; 2003 Feb; 163(2):685-98. PubMed ID: 12618406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.