These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 9161720)
1. The structural and functional essentiality of the N-terminal alpha-helix in the phospholipase A2 of the Taiwan banded krait. Chang LS; Chang CC; Wu PF Biochem Mol Biol Int; 1997 May; 41(6):1247-53. PubMed ID: 9161720 [TBL] [Abstract][Full Text] [Related]
2. Expression of Taiwan banded krait phospholipase A2 in Escherichia coli, a fully active enzyme generated by hydrolyzing with aminopeptidase. Chang LS; Wu PF; Chang CC Biochem Biophys Res Commun; 1996 Aug; 225(3):990-6. PubMed ID: 8780722 [TBL] [Abstract][Full Text] [Related]
3. Sequence and crystal structure determination of a basic phospholipase A2 from common krait (Bungarus caeruleus) at 2.4 A resolution: identification and characterization of its pharmacological sites. Singh G; Gourinath S; Sharma S; Paramasivam M; Srinivasan A; Singh TP J Mol Biol; 2001 Apr; 307(4):1049-59. PubMed ID: 11286555 [TBL] [Abstract][Full Text] [Related]
4. Functional involvement of Lys-6 in the enzymatic activity of phospholipase A2 from Bungarus multicinctus (Taiwan banded krait) snake venom. Chang LS; Kuo KW; Lin SR; Chang CC J Protein Chem; 1994 Oct; 13(7):641-8. PubMed ID: 7702746 [TBL] [Abstract][Full Text] [Related]
5. Characterization of phospholipase A2 (PLA2) from Taiwan Cobra: isoenzymes and their site-directed mutants. Pan FM; Chao SC; Wu SH; Chang WC; Chiou SH Biochem Biophys Res Commun; 1998 Sep; 250(1):154-60. PubMed ID: 9735349 [TBL] [Abstract][Full Text] [Related]
6. Structural analysis of phospholipase A2 from functional perspective. 2. Characterization of a molten globule-like state induced by site-specific mutagenesis. Yuan C; Byeon IJ; Poi MJ; Tsai MD Biochemistry; 1999 Mar; 38(10):2919-29. PubMed ID: 10074344 [TBL] [Abstract][Full Text] [Related]
7. The structural elements of phospholipase A2 affecting the enhancement of 8-anilinonaphthalene-1-sulfonate fluorescence. Chang LS; Wen EY; Chang CC Biochem Mol Biol Int; 1996 Mar; 38(3):617-23. PubMed ID: 8829622 [TBL] [Abstract][Full Text] [Related]
8. The essentiality of His-47 and the N-terminal region for the binding of 8-anilinonaphthalene-1-sulfonate with Taiwan cobra phospholipase A2. Chang LS; Wen EY; Chang CC J Protein Chem; 1996 Apr; 15(3):255-60. PubMed ID: 8804572 [TBL] [Abstract][Full Text] [Related]
9. Roles of surface hydrophobic residues in the interfacial catalysis of bovine pancreatic phospholipase A2. Lee BI; Yoon ET; Cho W Biochemistry; 1996 Apr; 35(13):4231-40. PubMed ID: 8672459 [TBL] [Abstract][Full Text] [Related]
10. Phospholipase A2 engineering. Probing the structural and functional roles of N-terminal residues with site-directed mutagenesis, X-ray, and NMR. Liu X; Zhu H; Huang B; Rogers J; Yu BZ; Kumar A; Jain MK; Sundaralingam M; Tsai MD Biochemistry; 1995 Jun; 34(22):7322-34. PubMed ID: 7779775 [TBL] [Abstract][Full Text] [Related]
11. Phospholipase A2 engineering. X-ray structural and functional evidence for the interaction of lysine-56 with substrates. Noel JP; Bingman CA; Deng TL; Dupureur CM; Hamilton KJ; Jiang RT; Kwak JG; Sekharudu C; Sundaralingam M; Tsai MD Biochemistry; 1991 Dec; 30(51):11801-11. PubMed ID: 1751497 [TBL] [Abstract][Full Text] [Related]
12. Phospholipase A2 engineering. Deletion of the C-terminus segment changes substrate specificity and uncouples calcium and substrate binding at the zwitterionic interface. Huang B; Yu BZ; Rogers J; Byeon IJ; Sekar K; Chen X; Sundaralingam M; Tsai MD; Jain MK Biochemistry; 1996 Sep; 35(37):12164-74. PubMed ID: 8810924 [TBL] [Abstract][Full Text] [Related]
13. The N-terminal alpha-helix of pancreatic phospholipase A2 determines productive-mode orientation of the enzyme at the membrane surface. Qin S; Pande AH; Nemec KN; Tatulian SA J Mol Biol; 2004 Nov; 344(1):71-89. PubMed ID: 15504403 [TBL] [Abstract][Full Text] [Related]
14. Role of the N-terminal region in phospholipases A2 from Naja naja atra (Taiwan cobra) and Naja nigricollis (spitting cobra) venoms. Yang CC; Chang LS Toxicon; 1988; 26(8):721-31. PubMed ID: 3188062 [TBL] [Abstract][Full Text] [Related]
15. The essentiality of B chain in stabilizing the structure of the A chain in beta 1-bungarotoxin from Bungarus multicinctus venom. Chang LS; Lin SR; Chang CC; Yang CC J Protein Chem; 1994 Feb; 13(2):233-6. PubMed ID: 8060495 [TBL] [Abstract][Full Text] [Related]
16. Differential interfacial and substrate binding modes of mammalian pancreatic phospholipases A2: a comparison among human, bovine, and porcine enzymes. Snitko Y; Han SK; Lee BI; Cho W Biochemistry; 1999 Jun; 38(24):7803-10. PubMed ID: 10387020 [TBL] [Abstract][Full Text] [Related]
17. Modification of the head-group selectivity of porcine pancreatic phospholipase A2 by protein engineering. Bhat MK; Pickersgill RW; Perry BN; Brown RA; Jones ST; Mueller-Harvey I; Sumner IG; Goodenough PW Biochemistry; 1993 Nov; 32(45):12203-8. PubMed ID: 8105891 [TBL] [Abstract][Full Text] [Related]
18. cDNA sequence analysis and mutagenesis studies on the A chain of beta-bungarotoxin from Taiwan banded krait. Chang LS; Wu PF; Chang CC J Protein Chem; 1996 Nov; 15(8):755-61. PubMed ID: 9008300 [TBL] [Abstract][Full Text] [Related]
19. A structural determinant of the unique interfacial binding mode of bovine pancreatic phospholipase A2. Lee BI; Dua R; Cho W Biochemistry; 1999 Jun; 38(24):7811-8. PubMed ID: 10387021 [TBL] [Abstract][Full Text] [Related]
20. Structural and functional effects of tryptophans inserted into the membrane-binding and substrate-binding sites of human group IIA phospholipase A2. Nemec KN; Pande AH; Qin S; Bieber Urbauer RJ; Tan S; Moe D; Tatulian SA Biochemistry; 2006 Oct; 45(41):12448-60. PubMed ID: 17029400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]