BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9162075)

  • 1. Evidence for the existence of two ATP-sensitive Rb+ occlusion pockets within the transmembrane domains of Na+/K+-ATPase.
    Liu L; Askari A
    J Biol Chem; 1997 May; 272(22):14380-6. PubMed ID: 9162075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chymotryptic digestion of the cytoplasmic domain of the beta subunit of Na/K-ATPase alters kinetics of occlusion of Rb+ ions.
    Shainskaya A; Karlish SJ
    J Biol Chem; 1996 Apr; 271(17):10309-16. PubMed ID: 8626600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric regulation of the access channels to the Rb+ occlusion sites of (Na+ + K+)-ATPase.
    Hasenauer J; Huang WH; Askari A
    J Biol Chem; 1993 Feb; 268(5):3289-97. PubMed ID: 8381424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solubilization of a complex of tryptic fragments of Na,K-ATPase containing occluded Rb ions and bound ouabain.
    Or E; Goldshleger ED; Tal DM; Karlish SJ
    Biochemistry; 1996 May; 35(21):6853-64. PubMed ID: 8639637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-sensitive interactions among the transmembrane helices of Na+/K+-ATPase.
    Sarvazyan NA; Ivanov A; Modyanov NN; Askari A
    J Biol Chem; 1997 Mar; 272(12):7855-8. PubMed ID: 9065451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensive digestion of Na+,K(+)-ATPase by specific and nonspecific proteases with preservation of cation occlusion sites.
    Capasso JM; Hoving S; Tal DM; Goldshleger R; Karlish SJ
    J Biol Chem; 1992 Jan; 267(2):1150-8. PubMed ID: 1309764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are the states that occlude rubidium obligatory intermediates of the Na(+)/K(+)-ATPase reaction?
    Kaufman SB; González-Lebrero RM; Schwarzbaum PJ; Nørby JG; Garrahan PJ; Rossi RC
    J Biol Chem; 1999 Jul; 274(30):20779-90. PubMed ID: 10409617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. E2→E1 transition and Rb(+) release induced by Na(+) in the Na(+)/K(+)-ATPase. Vanadate as a tool to investigate the interaction between Rb(+) and E2.
    Montes MR; Monti JL; Rossi RC
    Biochim Biophys Acta; 2012 Sep; 1818(9):2087-93. PubMed ID: 22521366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rb+ occlusion in renal (Na+ + K+)-ATPase characterized with a simple manual assay.
    Shani M; Goldschleger R; Karlish SJ
    Biochim Biophys Acta; 1987 Nov; 904(1):13-21. PubMed ID: 2822111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 19-kDa C-terminal tryptic fragment of the alpha chain of Na/K-ATPase is essential for occlusion and transport of cations.
    Karlish SJ; Goldshleger R; Stein WD
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4566-70. PubMed ID: 2162048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Occlusion of Rb(+) in the Na(+)/K(+)-ATPase. I. The identity of occluded states formed by the physiological or the direct routes: occlusion/deocclusion kinetics through the direct route.
    González-Lebrero RM; Kaufman SB; Montes MR; Nørby JG; Garrahan PJ; Rossi RC
    J Biol Chem; 2002 Feb; 277(8):5910-21. PubMed ID: 11739377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium(III)ATP inactivating (Na+ + K+)-ATPase supports Na+-Na+ and Rb+-Rb+ exchanges in everted red blood cells but not Na+,K+ transport.
    Pauls H; Serpersu EH; Kirch U; Schoner W
    Eur J Biochem; 1986 Jun; 157(3):585-95. PubMed ID: 2424757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of Rb+ and Na+ occlusion on (Na+,K+)-ATPase by modification of carboxyl groups.
    Shani-Sekler M; Goldshleger R; Tal DM; Karlish SJ
    J Biol Chem; 1988 Dec; 263(36):19331-41. PubMed ID: 2848822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that the cation occlusion domain of Na/K-ATPase consists of a complex of membrane-spanning segments. Analysis of limit membrane-embedded tryptic fragments.
    Shainskaya A; Karlish SJ
    J Biol Chem; 1994 Apr; 269(14):10780-9. PubMed ID: 8144667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state analysis of enzymes with non-Michaelis-Menten kinetics: The transport mechanism of Na
    Monti JLE; Montes MR; Rossi RC
    J Biol Chem; 2018 Jan; 293(4):1373-1385. PubMed ID: 29191836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional consequences of amino-terminal diversity of the catalytic subunit of the Na,K-ATPase.
    Daly SE; Lane LK; Blostein R
    J Biol Chem; 1994 Sep; 269(39):23944-8. PubMed ID: 7929042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pathway for spontaneous occlusion of Rb+ in the Na+/K+-ATPase.
    González-Lebrero RM; Kaufman SB; Garrahan PJ; Rossi RC
    Biochemistry; 2008 Jun; 47(22):6073-80. PubMed ID: 18465842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of the interaction between the fluorescent probe eosin and the Na+/K+-ATPase studied through Rb+ occlusion.
    Montes MR; González-Lebrero RM; Garrahan PJ; Rossi RC
    Biochemistry; 2004 Feb; 43(7):2062-9. PubMed ID: 14967046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between fragments of trypsinized Na,K-ATPase detected by thermal inactivation of Rb+ occlusion and dissociation of the M5/M6 fragment.
    Shainskaya A; Nesaty V; Karlish SJ
    J Biol Chem; 1998 Mar; 273(13):7311-9. PubMed ID: 9516425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of Glu-953 of the alpha chain of Na+,K(+)-ATPase associated with inactivation of cation occlusion.
    Goldshleger R; Tal DM; Moorman J; Stein WD; Karlish SJ
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6911-5. PubMed ID: 1353883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.