BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 9162081)

  • 1. Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine.
    Kleeman TA; Wei D; Simpson KL; First EA
    J Biol Chem; 1997 May; 272(22):14420-5. PubMed ID: 9162081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase.
    Xin Y; Li W; Dwyer DS; First EA
    J Mol Biol; 2000 Oct; 303(2):287-98. PubMed ID: 11023793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The amino acid sequence of the tyrosyl-tRNA synthetase from Bacillus stearothermophilus.
    Winter G; Koch GL; Hartley BS; Barker DG
    Eur J Biochem; 1983 May; 132(2):383-7. PubMed ID: 6840095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalysis of tyrosyl-adenylate formation by the human tyrosyl-tRNA synthetase.
    Austin J; First EA
    J Biol Chem; 2002 Apr; 277(17):14812-20. PubMed ID: 11856731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharomyces cerevisiae cytoplasmic tyrosyl-tRNA synthetase gene. Isolation by complementation of a mutant Escherichia coli suppressor tRNA defective in aminoacylation and sequence analysis.
    Chow CM; RajBhandary UL
    J Biol Chem; 1993 Jun; 268(17):12855-63. PubMed ID: 8509419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia coli tyrosyl- and methionyl-tRNA synthetases display sequence similarity at the binding site for the 3'-end of tRNA.
    Hountondji C; Lederer F; Dessen P; Blanquet S
    Biochemistry; 1986 Jan; 25(1):16-21. PubMed ID: 3513822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence comparisons in the aminoacyl-tRNA synthetases with emphasis on regions of likely homology with sequences in the Rossmann fold in the methionyl and tyrosyl enzymes.
    Walker EJ; Jeffrey PD
    Protein Seq Data Anal; 1988 Feb; 1(3):187-93. PubMed ID: 3283733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analogies between the 3' tRNA-like structure of brome mosaic virus RNA and yeast tRNATyr revealed by protection studies with yeast tyrosyl-tRNA synthetase.
    Perret V; Florentz C; Dreher T; Giege R
    Eur J Biochem; 1989 Nov; 185(2):331-9. PubMed ID: 2684668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase.
    Webster T; Tsai H; Kula M; Mackie GA; Schimmel P
    Science; 1984 Dec; 226(4680):1315-7. PubMed ID: 6390679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosyl-tRNA synthetase from baker's yeast. Order of substrate addition, discrimination of 20 amino acids in aminoacylation of tRNATyr-C-C-A and tRNATyr-C-C-A(3'NH2).
    Freist W; Sternbach H
    Eur J Biochem; 1988 Nov; 177(2):425-33. PubMed ID: 3056726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-specific microhelix aminoacylation by a eukaryotic pathogen tRNA synthetase dependent on a single base pair.
    Quinn CL; Tao N; Schimmel P
    Biochemistry; 1995 Oct; 34(39):12489-95. PubMed ID: 7547995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary structure of the C-terminal domain of the tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus: a novel type of anticodon binding domain?
    Pintar A; Guez V; Castagné C; Bedouelle H; Delepierre M
    FEBS Lett; 1999 Mar; 446(1):81-5. PubMed ID: 10100619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Major anticodon-binding region missing from an archaebacterial tRNA synthetase.
    Steer BA; Schimmel P
    J Biol Chem; 1999 Dec; 274(50):35601-6. PubMed ID: 10585437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural variation of tyrosyl-tRNA synthetase and comparison with engineered mutants.
    Jones MD; Lowe DM; Borgford T; Fersht AR
    Biochemistry; 1986 Apr; 25(8):1887-91. PubMed ID: 3011073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disordered C-terminal domain of tyrosyl-tRNA synthetase: secondary structure prediction.
    Jermutus L; Guez V; Bedouelle H
    Biochimie; 1999 Mar; 81(3):235-44. PubMed ID: 10385005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved amino acids near the carboxy terminus of bacterial tyrosyl-tRNA synthetase are involved in tRNA and Tyr-AMP binding.
    Salazar JC; Zuñiga R; Lefimil C; Söll D; Orellana O
    FEBS Lett; 2001 Mar; 491(3):257-60. PubMed ID: 11240138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of transcription of the yeast tRNATyr gene in cell-free extracts by tyrosyl-tRNA synthetase.
    Smagowicz W; Ruet A; Camier S; Sentenac A; Fromageot P; Sternbach H
    Nature; 1983 Aug 25-31; 304(5928):747-9. PubMed ID: 6350890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly.
    Karanasios E; Simader H; Panayotou G; Suck D; Simos G
    J Mol Biol; 2007 Dec; 374(4):1077-90. PubMed ID: 17976650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion mutagenesis using an 'M13 splint': the N-terminal structural domain of tyrosyl-tRNA synthetase (B. stearothermophilus) catalyses the formation of tyrosyl adenylate.
    Waye MM; Winter G; Wilkinson AJ; Fersht AR
    EMBO J; 1983; 2(10):1827-9. PubMed ID: 6315404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.