These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 9162112)

  • 1. Starvation for a specific amino acid induces high frequencies of rho- mutants in Saccharomyces cerevisiae.
    Heidenreich E; Wintersberger U
    Curr Genet; 1997 May; 31(5):408-13. PubMed ID: 9162112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An examination of adaptive reversion in Saccharomyces cerevisiae.
    Steele DF; Jinks-Robertson S
    Genetics; 1992 Sep; 132(1):9-21. PubMed ID: 1398066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive reversions of a frameshift mutation in arrested Saccharomyces cerevisiae cells by simple deletions in mononucleotide repeats.
    Heidenreich E; Wintersberger U
    Mutat Res; 2001 Jan; 473(1):101-7. PubMed ID: 11166029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication-dependent and selection-induced mutations in respiration-competent and respiration-deficient strains of Saccharomyces cerevisiae.
    Heidenreich E; Wintersberger U
    Mol Gen Genet; 1998 Nov; 260(4):395-400. PubMed ID: 9870705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the CDC2 gene on adaptive mutation in the yeast Saccharomyces cerevisiae.
    Baranowska H; Policińska Z; Jachymczyk WJ
    Curr Genet; 1995 Nov; 28(6):521-5. PubMed ID: 8593682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The involvement of the RAD6 gene in starvation-induced reverse mutation in Saccharomyces cerevisiae.
    Storchová Z; Rojas Gil AP; Janderová B; Vondrejs V
    Mol Gen Genet; 1998 Jun; 258(5):546-52. PubMed ID: 9669337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The exceptionally high rate of spontaneous mutations in the polymerase delta proofreading exonuclease-deficient Saccharomyces cerevisiae strain starved for adenine.
    Achilli A; Matmati N; Casalone E; Morpurgo G; Lucaccioni A; Pavlov YI; Babudri N
    BMC Genet; 2004 Dec; 5():34. PubMed ID: 15617571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome b of cob revertants in yeast. 1. Isolation and characterization of revertants derived from cob exon mutants of Saccharomyces cerevisiae.
    Burger G
    Mol Gen Genet; 1984; 196(1):158-66. PubMed ID: 6384725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three mitochondrial transporters of Saccharomyces cerevisiae are essential for ammonium fixation and lysine biosynthesis in synthetic minimal medium.
    Scarcia P; Palmieri L; Agrimi G; Palmieri F; Rottensteiner H
    Mol Genet Metab; 2017 Nov; 122(3):54-60. PubMed ID: 28784321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast.
    Eisler H; Fröhlich KU; Heidenreich E
    Exp Cell Res; 2004 Nov; 300(2):345-53. PubMed ID: 15474999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of papillae on colonies of two isopolyauxotrophic strains of Saccharomyces cerevisiae allelic in RAD6 during adenine starvation.
    Rojas Gil AP; Vondrejs V
    Folia Microbiol (Praha); 1999; 44(3):299-305. PubMed ID: 10664886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Starvation-associated mutagenesis in yeast Saccharomyces cerevisiae is affected by Ras2/cAMP signaling pathway.
    Storchová Z; Vondrejs V
    Mutat Res; 1999 Dec; 431(1):59-67. PubMed ID: 10656486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of spontaneous revertants in haploid yeast.
    Korogodina VL; Korogodin VI; Simonyan NV; Maiorova ES
    Yeast; 1995 Jun; 11(8):701-11. PubMed ID: 7668040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relevance of oxidative stress and cytotoxic DNA lesions for spontaneous mutagenesis in non-replicating yeast cells.
    Steinboeck F; Hubmann M; Bogusch A; Dorninger P; Lengheimer T; Heidenreich E
    Mutat Res; 2010 Jun; 688(1-2):47-52. PubMed ID: 20223252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic damage during thymidylate starvation in Saccharomyces cerevisiae.
    Barclay BJ; Little JG
    Mol Gen Genet; 1978 Mar; 160(1):33-40. PubMed ID: 347246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ploidy, growth conditions and the mitochondrial nucleoid-associated protein Ilv5p on the rate of mutation of mitochondrial DNA in Saccharomyces cerevisiae.
    Sia RA; Urbonas BL; Sia EA
    Curr Genet; 2003 Oct; 44(1):26-37. PubMed ID: 14508606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of mitochondria in carbon catabolite repression in yeast.
    Haussmann P; Zimmermann FK
    Mol Gen Genet; 1976 Oct; 148(2):205-11. PubMed ID: 790158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A search for a general phenomenon of adaptive mutability.
    Galitski T; Roth JR
    Genetics; 1996 Jun; 143(2):645-59. PubMed ID: 8725216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Starvation induces genomic rearrangements and starvation-resilient phenotypes in yeast.
    Coyle S; Kroll E
    Mol Biol Evol; 2008 Feb; 25(2):310-8. PubMed ID: 18032404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of auxotrophic starvation of mitochondrial marker transmission in the cdc8 mutant of Saccharomyces cerevisiae.
    Kruszewska A; Szcześniak B; Gajewski W
    Mol Gen Genet; 1976 Oct; 148(1):65-77. PubMed ID: 792682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.