These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 9162196)
1. Probes for hidden hyperdiploidy in acute lymphoblastic leukaemia. Moorman AV; Clark R; Farrell DM; Hawkins JM; Martineau M; Secker-Walker LM Genes Chromosomes Cancer; 1996 May; 16(1):40-5. PubMed ID: 9162196 [TBL] [Abstract][Full Text] [Related]
2. Prognostic value of structural chromosomal rearrangements and small cell clones with high hyperdiploidy in children with acute lymphoblastic leukemia. Zemanova Z; Michalova K; Sindelarova L; Smisek P; Brezinova J; Ransdorfova S; Vavra V; Dohnalova A; Stary J Leuk Res; 2005 Mar; 29(3):273-81. PubMed ID: 15661262 [TBL] [Abstract][Full Text] [Related]
3. Automated four-color interphase fluorescence in situ hybridization approach for the simultaneous detection of specific aneuploidies of diagnostic and prognostic significance in high hyperdiploid acute lymphoblastic leukemia. Blandin AT; Mühlematter D; Bougeon S; Gogniat C; Porter S; Beyer V; Parlier V; Beckmann JS; van Melle G; Jotterand M Cancer Genet Cytogenet; 2008 Oct; 186(2):69-77. PubMed ID: 18940469 [TBL] [Abstract][Full Text] [Related]
5. High hyperdiploid childhood acute lymphoblastic leukemia. Paulsson K; Johansson B Genes Chromosomes Cancer; 2009 Aug; 48(8):637-60. PubMed ID: 19415723 [TBL] [Abstract][Full Text] [Related]
6. Flow cytometric DNA index, G-band karyotyping, and comparative genomic hybridization in detection of high hyperdiploidy in childhood acute lymphoblastic leukemia. Nygaard U; Larsen J; Kristensen TD; Wesenberg F; Jonsson OG; Carlsen NT; Forestier E; Kirchhoff M; Larsen JK; Schmiegelow K; Christensen IJ J Pediatr Hematol Oncol; 2006 Mar; 28(3):134-40. PubMed ID: 16679935 [TBL] [Abstract][Full Text] [Related]
7. Detection of hyperdiploid karyotypes (>50 chromosomes) in childhood acute lymphoblastic leukemia (ALL) using fluorescence in situ hybridization (FISH). Ritterbach J; Hiddemann W; Beck JD; Schrappe M; Janka-Schaub G; Ludwig WD; Harbott J; Lampert F Leukemia; 1998 Mar; 12(3):427-33. PubMed ID: 9529139 [TBL] [Abstract][Full Text] [Related]
8. Near haploid childhood acute lymphoblastic leukemia masked by hyperdiploid line: detection by fluorescence in situ hybridization. Stark B; Jeison M; Gobuzov R; Krug H; Glaser-Gabay L; Luria D; El-Hasid R; Harush MB; Avrahami G; Fisher S; Stein J; Zaizov R; Yaniv I Cancer Genet Cytogenet; 2001 Jul; 128(2):108-13. PubMed ID: 11463448 [TBL] [Abstract][Full Text] [Related]
9. Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia. Heerema NA; Raimondi SC; Anderson JR; Biegel J; Camitta BM; Cooley LD; Gaynon PS; Hirsch B; Magenis RE; McGavran L; Patil S; Pettenati MJ; Pullen J; Rao K; Roulston D; Schneider NR; Shuster JJ; Sanger W; Sutcliffe MJ; van Tuinen P; Watson MS; Carroll AJ Genes Chromosomes Cancer; 2007 Jul; 46(7):684-93. PubMed ID: 17431878 [TBL] [Abstract][Full Text] [Related]
10. Clonal heterogeneity and chromosomal instability at disease presentation in high hyperdiploid acute lymphoblastic leukemia. Talamo A; Chalandon Y; Marazzi A; Jotterand M Cancer Genet Cytogenet; 2010 Dec; 203(2):209-14. PubMed ID: 21156235 [TBL] [Abstract][Full Text] [Related]
11. The application of conventional cytogenetics, FISH, and RT-PCR to detect genetic changes in 70 children with ALL. Soszynska K; Mucha B; Debski R; Skonieczka K; Duszenko E; Koltan A; Wysocki M; Haus O Ann Hematol; 2008 Dec; 87(12):991-1002. PubMed ID: 18633615 [TBL] [Abstract][Full Text] [Related]
12. Evidence for a single-step mechanism in the origin of hyperdiploid childhood acute lymphoblastic leukemia. Paulsson K; Mörse H; Fioretos T; Behrendtz M; Strömbeck B; Johansson B Genes Chromosomes Cancer; 2005 Oct; 44(2):113-22. PubMed ID: 15942938 [TBL] [Abstract][Full Text] [Related]
13. Hyperdiploidy is a common finding in monoclonal gammopathy of undetermined significance and monosomy 13 is restricted to these hyperdiploid patients. Brousseau M; Leleu X; Gerard J; Gastinne T; Godon A; Genevieve F; Dib M; Lai JL; Facon T; Zandecki M; Clin Cancer Res; 2007 Oct; 13(20):6026-31. PubMed ID: 17947464 [TBL] [Abstract][Full Text] [Related]
14. Chromosomal changes detected by fluorescence in situ hybridization in patients with acute lymphoblastic leukemia. Zhang L; Parkhurst JB; Kern WF; Scott KV; Niccum D; Mulvihill JJ; Li S Chin Med J (Engl); 2003 Sep; 116(9):1298-303. PubMed ID: 14527352 [TBL] [Abstract][Full Text] [Related]
15. [Hyperdiploidy (greater than 50 chromosomes) has the most favorable prognosis among the major karyotypic subgroups of childhood acute lymphoblastic leukemia]. Shikano T; Ishikawa Y; Kobayashi R; Konno M; Hatayama Y; Nakadate H; Hatae Y; Takeda T Rinsho Ketsueki; 1990 Mar; 31(3):308-14. PubMed ID: 2366333 [TBL] [Abstract][Full Text] [Related]
16. High-hyperdiploidy in Philadelphia positive adult acute lymphoblastic leukaemia: case-series and review of literature. Tauro S; McMullan D; Griffiths M; Craddock C; Mahendra P Bone Marrow Transplant; 2003 May; 31(9):763-6. PubMed ID: 12732882 [TBL] [Abstract][Full Text] [Related]
17. Cytogenetic analysis and clinical significance of chromosome 7 aberrations in acute leukaemia. Brozek I; Babińska M; Kardaś I; Woźniak A; Balcerska A; Hellmann A; Limon J J Appl Genet; 2003; 44(3):401-12. PubMed ID: 12923315 [TBL] [Abstract][Full Text] [Related]
18. [Detection of aberrant chromosomes in acute lymphoblastic leukemia by fluorescence in situ hybridization]. Yang K; Huang L Zhonghua Xue Ye Xue Za Zhi; 1999 Dec; 20(12):640-2. PubMed ID: 11721367 [TBL] [Abstract][Full Text] [Related]
19. Array-CGH reveals hidden gene dose changes in children with acute lymphoblastic leukaemia and a normal or failed karyotype by G-banding. Kuchinskaya E; Heyman M; Nordgren A; Schoumans J; Staaf J; Borg A; Söderhäll S; Grandér D; Nordenskjöld M; Blennow E Br J Haematol; 2008 Mar; 140(5):572-7. PubMed ID: 18275435 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous detection of multiple genetic aberrations in single cells by spectral fluorescence in situ hybridization. Slovak ML; Tcheurekdjian L; Zhang FF; Murata-Collins JL Cancer Res; 2001 Feb; 61(3):831-6. PubMed ID: 11221864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]