These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 9162514)
21. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). Zhu Y; Yu H; Wang J; Fang W; Yuan J; Yang Z J Agric Food Chem; 2007 Feb; 55(3):1045-52. PubMed ID: 17263511 [TBL] [Abstract][Full Text] [Related]
22. Effects of soil properties on food web accumulation of heavy metals to the wood mouse (Apodemus sylvaticus). van den Brink N; Lammertsma D; Dimmers W; Boerwinkel MC; van der Hout A Environ Pollut; 2010 Jan; 158(1):245-51. PubMed ID: 19647912 [TBL] [Abstract][Full Text] [Related]
23. Rapid ecotoxicological assessment of heavy metal combined polluted soil using canonical analysis. Chen SH; Zhou QX; Sun TH; Li PJ J Environ Sci (China); 2003 Nov; 15(6):854-8. PubMed ID: 14758908 [TBL] [Abstract][Full Text] [Related]
24. Profiles of enzymatic activity in earthworms from zinc, lead and cadmium polluted areas near Olkusz (Poland). Łaszczyca P; Augustyniak M; Babczyńska A; Bednarska K; Kafel A; Migula P; Wilczek G; Witas I Environ Int; 2004 Sep; 30(7):901-10. PubMed ID: 15196838 [TBL] [Abstract][Full Text] [Related]
25. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China. Zhao X; Dong D; Hua X; Dong S J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903 [TBL] [Abstract][Full Text] [Related]
26. Chemical extractions and predicted free ion activities fail to estimate metal transfer from soil to field land snails. Mourier B; Fritsch C; Dhivert E; Gimbert F; Cœurdassier M; Pauget B; Vaufleury Ad; Scheifler R Chemosphere; 2011 Oct; 85(6):1057-65. PubMed ID: 21903239 [TBL] [Abstract][Full Text] [Related]
27. Standard use conditions of terrestrial gastropods in active biomonitoring of soil contamination. Viard B; Maul A; Pihan JC J Environ Monit; 2004 Feb; 6(2):103-7. PubMed ID: 14760452 [TBL] [Abstract][Full Text] [Related]
28. Effects of heavy metals on earthworms along contamination gradients in organic rich soils. Lukkari T; Taavitsainen M; Väisänen A; Haimi J Ecotoxicol Environ Saf; 2004 Nov; 59(3):340-8. PubMed ID: 15388274 [TBL] [Abstract][Full Text] [Related]
29. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Hernandez L; Probst A; Probst JL; Ulrich E Sci Total Environ; 2003 Aug; 312(1-3):195-219. PubMed ID: 12873411 [TBL] [Abstract][Full Text] [Related]
30. Transversal immission patterns and leachability of heavy metals in road side soils. Hjortenkrans DS; Bergbäck BG; Häggerud AV J Environ Monit; 2008 Jun; 10(6):739-46. PubMed ID: 18528541 [TBL] [Abstract][Full Text] [Related]
31. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems? Rozema J; Notten MJ; Aerts R; van Gestel CA; Hobbelen PH; Hamers TH Sci Total Environ; 2008 Dec; 406(3):443-8. PubMed ID: 18707753 [TBL] [Abstract][Full Text] [Related]
32. Growth and reproduction of earthworms in ultramafic soils. Maleri R; Reinecke SA; Mesjasz-Przybylowicz J; Reinecke AJ Arch Environ Contam Toxicol; 2007 Apr; 52(3):363-70. PubMed ID: 17354041 [TBL] [Abstract][Full Text] [Related]
33. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Micó C; Recatalá L; Peris M; Sánchez J Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506 [TBL] [Abstract][Full Text] [Related]
34. 8-hydroxydeoxyguanosine generated in the earthworm Eisenia fetida grown in metal-containing soil. Nakashima T; Okada T; Asahi J; Yamashita A; Kawai K; Kasai H; Matsuno K; Gamou S; Hirano T Mutat Res; 2008 Jul; 654(2):138-44. PubMed ID: 18585474 [TBL] [Abstract][Full Text] [Related]
35. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593 [TBL] [Abstract][Full Text] [Related]
36. Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails: metal bioavailability and bioaccumulation. Gomot-de VA; Pihan F Environ Toxicol Chem; 2002 Apr; 21(4):820-7. PubMed ID: 11951957 [TBL] [Abstract][Full Text] [Related]
37. How terrestrial snails can be used in risk assessment of soils. de Vaufleury A; Coeurdassier M; Pandard P; Scheifler R; Lovy C; Crini N; Badot PM Environ Toxicol Chem; 2006 Mar; 25(3):797-806. PubMed ID: 16566165 [TBL] [Abstract][Full Text] [Related]
38. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Zhuang P; McBride MB; Xia H; Li N; Li Z Sci Total Environ; 2009 Feb; 407(5):1551-61. PubMed ID: 19068266 [TBL] [Abstract][Full Text] [Related]
39. The snail Theba pisana as an indicator of soil contamination by trace elements: potential exposure for animals and humans. Madejón P; Arrébola J; Madejón E; Burgos P; López-Garrido R; Cárcaba A; Cabrera F; Murillo JM J Sci Food Agric; 2013 Jul; 93(9):2259-66. PubMed ID: 23737085 [TBL] [Abstract][Full Text] [Related]
40. Determination of oral uptake and biodistribution of platinum and chromium by the garden snail (Helix aspersa) employing nano-secondary ion mass-spectrometry. Eybe T; Audinot JN; Udelhoven T; Lentzen E; El Adib B; Ziebel J; Hoffmann L; Bohn T Chemosphere; 2013 Feb; 90(6):1829-38. PubMed ID: 23062942 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]