BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 9163338)

  • 1. Transgenic mice overexpressing ornithine and S-adenosylmethionine decarboxylases maintain a physiological polyamine homoeostasis in their tissues.
    Heljasvaara R; Veress I; Halmekytö M; Alhonen L; Jänne J; Laajala P; Pajunen A
    Biochem J; 1997 Apr; 323 ( Pt 2)(Pt 2):457-62. PubMed ID: 9163338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of polyamine depletion and accumulation of decarboxylated S-adenosylmethionine in the inhibition of growth of SV-3T3 cells treated with alpha-difluoromethylornithine.
    Pegg AE
    Biochem J; 1984 Nov; 224(1):29-38. PubMed ID: 6439194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent overexpression of ornithine decarboxylase and spermidine/spermine N(1)-acetyltransferase further accelerates the catabolism of hepatic polyamines in transgenic mice.
    Suppola S; Heikkinen S; Parkkinen JJ; Uusi-Oukari M; Korhonen VP; Keinänen T; Alhonen L; Jänne J
    Biochem J; 2001 Sep; 358(Pt 2):343-8. PubMed ID: 11513732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamine metabolism.
    Seiler N
    Digestion; 1990; 46 Suppl 2():319-30. PubMed ID: 2262065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyamine metabolism in Harding-Passey murine melanoma.
    López-Ballester JA; Peñafiel R; del Mar Valcárcel M; Lozano JA
    Melanoma Res; 1991; 1(3):187-93. PubMed ID: 1841714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of polyamine content in cultured fibroblasts.
    Bethell DR; Hibasami H; Pegg AE
    Am J Physiol; 1982 Nov; 243(5):C262-9. PubMed ID: 6291400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic mice over-producing putrescine in their tissues do not convert the diamine into higher polyamines.
    Halmekytö M; Alhonen L; Alakuijala L; Jänne J
    Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):505-8. PubMed ID: 8484731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine.
    Thu-Hang P; Bassie L; Safwat G; Trung-Nghia P; Christou P; Capell T
    Plant Physiol; 2002 Aug; 129(4):1744-54. PubMed ID: 12177487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diurnal levels of polyamines and activities of ornithine and S-adenosyl-L-methionine decarboxylases in mouse brain.
    Lapinjoki SP; Hietala OA; Pajunen AE; Piha RS
    Neurochem Res; 1981 Apr; 6(4):377-83. PubMed ID: 7266746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active transport and metabolic characteristics of polyamines in the rat lens.
    Maekawa S; Hibasami H; Uji Y; Nakashima K
    Biochim Biophys Acta; 1989 Dec; 993(2-3):199-203. PubMed ID: 2597692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overproduction of cardiac S-adenosylmethionine decarboxylase in transgenic mice.
    Nisenberg O; Pegg AE; Welsh PA; Keefer K; Shantz LM
    Biochem J; 2006 Jan; 393(Pt 1):295-302. PubMed ID: 16153183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of S-adenosyl-1,8-diamino-3-thio-octane and S-methyl-5'-methylthioadenosine on polyamine synthesis in Ehrlich ascites-tumour cells.
    Holm I; Persson L; Pegg AE; Heby O
    Biochem J; 1989 Jul; 261(1):205-10. PubMed ID: 2775206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyamine metabolism in different pathological states of the brain.
    Paschen W
    Mol Chem Neuropathol; 1992 Jun; 16(3):241-71. PubMed ID: 1358085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of inhibitors of spermidine and spermine synthesis on polyamine concentrations and growth of transformed mouse fibroblasts.
    Pegg AE; Borchardt RT; Coward JK
    Biochem J; 1981 Jan; 194(1):79-89. PubMed ID: 7305994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships between polyamine metabolism and RNA synthesis in post-ischemic liver cell repair.
    Ferioli ME; Schiaffonati L; Scalabrino G; Cairo G; Bernelli-Zazzera A
    J Cell Physiol; 1980 Apr; 103(1):121-8. PubMed ID: 6159362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of inhibitors of ornithine and S-adenosylmethionine decarboxylases on L6 myoblast proliferation.
    Stoscheck CM; Erwin BG; Florini JR; Richman RA; Pegg AE
    J Cell Physiol; 1982 Feb; 110(2):161-8. PubMed ID: 6802862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamines and their biosynthetic decarboxylases in various tissues of the young rat during recovery from undernutrition.
    McAnulty PA; Williams JP
    Biochem J; 1977 Jan; 162(1):109-21. PubMed ID: 849272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent regulation of ornithine decarboxylase and S-adenosylmethionine decarboxylase in methylthioadenosine phosphorylase-deficient malignant murine lymphoblasts.
    Kubota M; Kajander EO; Carson DA
    Cancer Res; 1985 Aug; 45(8):3567-72. PubMed ID: 3926303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental pattern of ornithine decarboxylase activity, S-adenosylmethionine decarboxylase, and polyamines of rat adrenal glands.
    Ekker M; Sourkes TL
    Biol Neonate; 1987; 51(5):260-7. PubMed ID: 3593807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of translation of mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase by polyamines.
    Kameji T; Pegg AE
    J Biol Chem; 1987 Feb; 262(6):2427-30. PubMed ID: 3818602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.